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Abstract

This project focuses on one of the most important conjectures in complex dynamics - that the
famous Mandelbrot set is a locally connected space. The conjecture is important because it would
give huge amounts of information about the dynamics of all complex quadratic polynomials. For
example, a proof of the conjecture solve a number of other problems, such as density of hyperbolicity
for complex quadratics. This work first endeavours to build up the necessary background to state
the conjecture, and then develops some of the basic theory. After this, we describe the cases where
the conjecture has been settled, and delve into the mathematics used to get there. The final section
explores a way that local connectivity of the Mandelbrot set can be leveraged, in particular to
construct a homeomorphic abstract topological space known as the pinched disc model.

Thurston’s Quadratic Minor Lamination [Thurston, 1985], which gives rise to a quotient space of the unit disc
that is homeomorphic to the Mandelbrot set if and only if the Mandelbrot set is locally connected. This image

was taken from [Blokh et al., 2017], where it is Figure 1 on page 3.



I certify that this project report has been written by me, is a record of work carried
out by me, and is essentially different from work undertaken for any other purpose
or assessment.

–Elliott Cawtheray
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1 Introduction "It can be argued that the mathematics behind these
images is even prettier than the picture itself"

—Robert L. Devaney

The Mandelbrot set is one of the shining stars of mathematics. It fascinates with its beauty and its
vast complexity, all resulting from a fairly simple process. It is worthy of the considerable attention
and study that it has been the focus of, but in spite of this, some fundamental questions about it
remain unanswered. The MLC conjecture, which states that the set is locally connected, is the most
significant such unanswered question.

The set, which describes the dynamical behaviour of quadratic maps on the complex plane, had its
properties studied and its importance outlined in the seminal works of Douady and Hubbard in the
1980s [Douady and Hubbard, 1985a], in which it was demonstrated (among many other things) that
if the Mandelbrot set is locally connected, then the Carathéodory-Torhorst Theorem gives a paramet-
rization of its boundary. Assuming local connectivity, this can be used to prove the conjecture that
hyperbolic maps are dense in the space of complex quadratics. This Density of Hyperbolicity Conjec-
ture (DHC)1 has been worked on for over 100 years, since Fatou [Fatou, 1919]. The MLC conjecture’s
would-be consequences do not end here - if we can find a proof, various other conjectures about the
dynamics of the quadratics would immediately follow.

Local connectivity has been shown at some points of the set. In 1989, Yoccoz proved local con-
nectivity in the case of non-infinitely renormalizable maps [Hubbard, 1993], and much progress has
been made for the remaining cases, most recently for some parameters of growing satellite type
[Cheraghi and Shishikura, 2015], and parameters of stationary satellite type with specific combinator-
ics [Dudko and Lyubich, 2019]. At this level, the topic is immensely technical, but we make an attempt
to explain what we can.

While the MLC conjecture holds the history of many decades of mathematics, the techniques that
have been developed to tackle it have provided insights into a variety of families of maps, some of
which are for the most part still to be studied. Thus, it is a conjecture with relevance to the future of
mathematics as much as to the past.

This project was written with a certain audience in mind. A keen undergraduate who has good
familiarity with university mathematics, and who has possibly even taken a class in topology, will
derive maximal (if not necessarily non-zero) pleasure and use from this work. The opening sections
define the Mandelbrot set and Julia sets, and investigate their basic properties, before moving on
to connectedness and local connectedness, with plentiful examples. After this, we develop some of
the theory of complex dynamics, including some deep results of complex analysis, and apply it to
the family of functions that relate to the Mandelbrot set, leading to definitions of equipotentials and
external rays. The project gets more advanced in the later sections, which explore the progress relating
to the conjecture over the past few decades, as discussed above. The final section demonstrates how
local connectedness of the Mandelbrot set can be applied, constructing the pinched disc model and
using it to show that MLC implies DHC.

This work features no original results. The exposition is my own, though without exception based
heavily on source material, which is cited at the start of the relevant sections. There are some original
worked examples, and some original images which for the most part have been generated using the
Python code linked below (making generous use of the in-built matplotlib and PIL modules - feel
free to use/modify it!), and edited using the GNU Image Manipulation Program.

https://github.com/elliottmaths/MLC-Conjecture

1DHC for real quadratics has been proven by Graczyk and Świątek [Graczyk and Świątek, 1997],
[Graczyk and Świątek, 1998] and Lyubich [Lyubich, 1997] (independently). In 2007, Kozlovski, Shen, and Strien
[Kozlovski et al., 2007] proved DHC for the space of all real polynomials. The complex case, and even the complex
quadratic case, remains open.
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2 Background

2.1 Some housework

For most of this project, we will be looking at the complex plane. On those occasions where we are
considering the real line, we will use the following familiar notation.

[a, b] = {x ∈ R : a ≤ x ≤ b}, (a, b) = {x ∈ R : a < x < b}

To avoid confusion with the above, we will use angled brackets when working with ordered pairs, e.g.
〈x, y〉 ∈ X × Y for x ∈ X, y ∈ Y .

Let S be a set of sets. Then
⋃
S denotes the union of the sets in S. That is,

⋃
S = {x ∈ X : X ∈ S}.

Let r ∈ R+. We will use the following notation for the open ball on the complex plane, and its variants:

B(z0, r) = {z ∈ C : |z−z0| < r}, C(z0, r) = {z ∈ C : |z−z0| = r}, D(z0, r) = {z ∈ C : |z−z0| ≤ r}

which can be handily remembered as the open ball, the circle, and the closed ball.

Unless otherwise stated, we will be working with the standard topology on the complex plane induced
by the metric d(z, w) = |z − w|, where |·| is the complex modulus. For example, for any A ⊆ C, we
define the diameter of A to be diam A = {sup |z − w| : z, w ∈ A}, the largest possible distance between
any pair of points in A.

We take N = {0, 1, 2, . . .}, and will use Z+ when we wish to exclude 0.

Derivatives will be denoted with a dash, e.g. f ′. If f : A → B is a function, and A ⊂ A, we denote
the restriction of f to A by f |A, which is the function A → B given by f |A(x) = x for all x ∈ A.

Let X be a topological space. We denote its closure by X, and its interior by int(X). If we have an
equivalence relation ∼ defined on X, we write [x] for the subset of X consisting of all elements of X
that are equivalent to a given x ∈ X, and call this subset the equivalence class of X containing x.
This partitions the elements of X, and we can obtain the quotient space X/∼ = {[x] : x ∈ X} which
is given the finest possible topology such that the map x 7→ [x] is continuous.

We will often be looking at the parametrization e2πit of C(0, 1), where t runs from 0 to 1. We will
say t is a member of R/Z, which is the unit interval with 0 and 1 identified. Note that distances in
R/Z are given by dR/Z(e2πis, e2πit) = min{|t− s|, |1− t− s|}, which is the minimum distance between
the two points in C(0, 1). When we want to look at this parametrization for rational t, we will say
t ∈ Q/Z, which is the set of rational values between 0 and 1, with 0 and 1 identified. If p/q ∈ Q/Z,
we will always take p and q to be co-prime.

When otherwise not stated, take c to be an arbitrary point in the parameter plane throughout this
work.
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2.2 The Mandelbrot set "In the whole of science, the whole of mathematics
smoothness was everything. What I did was to

open up roughness for investigation."
—Benoit B. Mandelbrot

Due to its intricate structure, there are multiple ways one could think of what the Mandelbrot set
actually is. We will be getting in to many of these, but to define it, we will start by considering it as a
classification of complex quadratic functions based on their dynamical behaviour. To this end, it will
be useful to introduce something called the parameter plane, which is where the Mandelbrot set will
live. It is the set C of complex numbers, where we will think of each point c as a parameter, which
will be used to define a function. In particular, for each c ∈ C, define the function fc : C → C by
fc(z) = z2 + c, so that we have the family of complex functions

F = {fc : c ∈ C}

This family is of particular importance because it is able to describe the dynamical behaviour of all
complex quadratics, while also consisting of elements of a ‘nice’ form. F is sometimes called the
Douady-Hubbard family of quadratic polynomials after Adrien Douady and John Hamal Hubbard
whose foundational work [Douady and Hubbard, 1985a] studied the dynamics of elements of F and
proposed the conjecture on which this work focuses. Note that all fc ∈ F are holomorphic.

So, we have the parameter plane, where each point of the complex plane has a quadratic function
associated with it. Let us briefly investigate the dynamical behaviour of the elements of F , that is,
what happens to

f◦kc (z) := (fc ◦ ... ◦ fc︸ ︷︷ ︸
k times

)(z)

for some c, z ∈ C, and as k →∞. The fact that c and z both come from a complex plane is a potential
cause for confusion, and it is for this reason we introduced the idea of a parameter plane, which c
varies over. Analogously, we say the complex plane over which z varies is called the dynamical plane.
So, to reiterate2, we have the parameter plane where each point of the complex plane is associated
with a function fc defined by the parameter c, and then for any given c, the domain of fc is also a
complex plane that we call the dynamical plane. Choosing a starting point z0 ∈ C in the dynamical
plane, for a fixed c ∈ C in the parameter plane, the point z0 will jump around the dynamical plane by
the sequence z0, fc(z0), f◦2c (z0), ..., and we have dynamics, explaining our choice of terminology.

Example 2.1 Take c = 0, so that we are considering the function f0 : z 7→ z2. The general dynamical
behaviour is easily described. If |z0| < 1, then the iterates |f◦k0 (z0)| → 0 as k → ∞. If |z0| > 1, then
|f◦k0 (z0)| → ∞. Finally, if |z0| = 1, then |f◦k0 (z0)| = 1 for all k ∈ N, so that our iterates jump around
the unit circle in the plane (this case is where the most interesting dynamics arise for this quadratic!).

Example 2.2 Suppose c ∈ C satisfies (c2 + c)2 + c = 0. One of the solutions to this quartic is
ω ≈ −0.12 + 0.745i. Then, the sequence of iterates will go 0, ω, ω2 + ω, (ω2 + ω)2 + ω = 0, ω, . . .,
so that we have a cycle of length 3. In fact, even if we approximate our parameter and perturb our
initial point slightly away from 0, the sequence of iterates appears to be pulled towards this cycle (see
Fig 1). We will return to this example regularly, and for the duration of this paper, ω is fixed to be
this parameter.

2No pun intended.
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Figure 1: The first 30 iterates of fω on the function’s dynamical plane, starting at the point z = 0.2.

Example 2.3 Take c = −0.7 − 0.3i, with our starting point z0 = 0. At first, the iterates seem to
calmly jump around inside the circle |z| = 2. The 25th iterate escapes this circle, and from there the
iterates blow up - In Figure 2, we show only the iterate immediately following this as otherwise it’s
too big to scale. The core takeaway is that |f◦kc (0)| → ∞ as k →∞.

Figure 2: The first 26 iterates of fc on the function’s dynamical plane, with c = −0.7− 0.3i and
starting at the point z = 0. The circle C(0, 2) is also shown, with the iterates remaining tame and

inside it to begin with. Once an iterate escapes the circle, the subsequent iterates explode in
magnitude.

At the start of this section, it was claimed that the family F fully describes the dynamics of all complex
quadratic maps. We formalise this a little bit. Suppose we have two functions f, g : C→ C such that
there exists a function h : C→ C, with f = h−1 ◦ g ◦ h. Then

f◦k = (h−1 ◦ g ◦ h)◦k = (h−1 ◦ g ◦ h) ◦ . . . ◦ (h−1 ◦ g ◦ h) = h−1 ◦ g◦k ◦ h

so that the dynamics of f and g are in some way linked. We call h a change of coordinates, and say f
and g are conjugate to each other. Depending on the context, we may want h to satisfy some property,
so that we have a good handle on the way that the dynamics of our two maps are linked. In our case,
we will have f : z 7→ a2z

2 + a1z1 + a0 as an arbitrary complex quadratic, g = fc for some fc ∈ F
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(uniquely determined by f), and h as an affine change of coordinates, so that h : z 7→ az + b for some
a, b ∈ C. Then, for the purposes of our topological and dynamical considerations, the maps f and fc
are effectively equivalent. In particular, it is clear that with such an h, iterates of f stay bounded if
and only if iterates of fc do. It remains to find our h. Suppose f = h−1 ◦ fc ◦ h. Then

f(z) = a2z
2 + a1z + a0 = (h−1 ◦ fc ◦ h)(z) = (h−1 ◦ fc)(az + b) = h−1((az + b)2 + c)

= h−1(a2z2 + 2abz + b2 + c) =
a2z2 + 2abz + b2 + c− b

a
= az2 + 2bz +

b2 − b+ c

a

for any z ∈ C, so that a2 = a, a1 = 2b, a0 = b2−b+c
a , and we can uniquely determine c = a2a0−

a21
4 + a1

2 .

It was also suggested that F ’s elements were in some way nice to work with. There are obvious
benefits to working with only one parameter, but it goes further than this. A critical point of a
function f : C → C is a point at which f ′(z) = 0. We shall see later that taking critical points
as initial points and looking at the behaviour of the resulting iterates can provide us with a lot of
information. For now, we note that all fc ∈ F have a single critical point, at z = 0. The image of a
critical point is called a critical value. Thus, each fc ∈ F has the single critical value c.

If we are willing to take on trust for now that z = 0 is in some way a special point to look at in the
dynamical plane, our definition of the Mandelbrot set is a logical one:

Definition 2.4 M = {c ∈ C : |f◦kc (0)| 6→ ∞ as k →∞}.

That is, M consists of all the points c ∈ C in the parameter plane whose associated function fc does
not go off to infinity as we iterate more and more, starting at the critical point z = 0 of fc.

The set was named after fractal geometry legend Benoit B. Mandelbrot3 by Douady and Hubbard
[Douady and Hubbard, 1985a].

Figure 3: Left: The Mandelbrot set is pictured on the parameter plane. More accurately, the
Mandelbrot set is being approximated. We turn some amount of pixels into points in the parameter
plane, and test how many iterates it takes for them to leave D(0, 2) (see Corollary 2.6). The more

iterates, the darker the pixel.

Right: We zoom in on the point c ≈ −0.16 + 1.035i, and find an approximate copy of the Mandelbrot
set within. The presence of these ‘baby Mandelbrots’ within itself will be explained in Section 4.3.

Figure 3 is one of the most famous images in all of mathematics, and for good reason - it is stunning
and infinitely intricate, in spite of its simple definition. We briefly establish a couple ofM ’s properties.

3The ‘B.’ stands for Benoit B. Mandelbrot
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Theorem 2.5 The Mandelbrot set is bounded, in particular M ⊆ D(0, 2).

Proof. We begin with a Lemma: For |c| > 2, the sequence of (absolute values of) iterates {
∣∣f◦kc (0)

∣∣}k∈N
is monotonically increasing. The proof, which we omit, is an exercise in strong induction. Next,
suppose |c| > 2. Then by our lemma, we may define εk =

∣∣f◦kc (0)
∣∣ − 2 > 0 for each k ≥ 1, and will

have ε1 < ε2 < ε3 < . . .

Therefore,∣∣∣f◦kc (0)
∣∣∣ =

∣∣∣fc(f◦(k−1)c (0))
∣∣∣ =

∣∣∣f◦(k−1)c (0)2 + c
∣∣∣ ≥ ∣∣∣f◦(k−1)c (0)

∣∣∣2 − |c| = ∣∣∣f◦(k−1)c (0)
∣∣∣2 − |fc(0)|

≥
∣∣∣f◦(k−1)c (0)

∣∣∣2 − ∣∣∣f◦(k−1)c (0)
∣∣∣ =

∣∣∣f◦(k−1)c (0)
∣∣∣ (∣∣∣f◦(k−1)c (0)

∣∣∣− 1
)

=
∣∣∣f◦(k−1)c (0)

∣∣∣ (εk−1 + 1)

≥
∣∣∣f◦(k−2)c (0)

∣∣∣ (εk−1 + 1)(εk−2 + 1) ≥ . . . ≥ |fc(0)|
k−1∏
r=1

(εr + 1)

≥ |fc(0)| (ε1 + 1)k−1 →∞ as k →∞

so that
∣∣f◦kc (0)

∣∣→∞ as k →∞, and c 6∈M .

Corollary 2.6 If |f◦kc (0)| > 2 for any k ∈ N, then c 6∈M . Therefore,

M = {c ∈ C : |f◦kc (0)| ≤ 2 for all k ∈ N}.

Theorem 2.7 The Mandelbrot set is compact, and has a non-empty interior.

Proof. For compactness, it suffices to show that M is closed, by the Heine-Borel Theorem adapted to
the complex plane, and by Theorem 2.5. For each n ∈ Z+, define

An = {c ∈ C : |f◦nc (0)| ≤ 2} = (f◦nc )−1 (D (0, 2))

As the pre-image of a closed set under a continuous function, An is closed. Further, if we use Corol-
lary 2.6, we get that ⋂

n∈Z+

An = {c ∈ C : |f◦nc (0)| ≤ 2 for all n ∈ Z+} = M

As an intersection of closed sets, M must be closed.

Looking to the interior, suppose |c| ≤ 1
4 . Then

|fc(0)| = |c| ≤ 1

4
≤ 1

2

Now suppose
∣∣f◦lc (0)

∣∣ ≤ 1
2 for all l < k. Then∣∣∣f◦kc (0)
∣∣∣ =

∣∣∣f◦(k−1)c (0)2 + c
∣∣∣ ≤ ∣∣∣f◦(k−1)c (0)

∣∣∣2 + |c| ≤ 1

4
+

1

4
=

1

2

Thus,
∣∣f◦kc (0)

∣∣ ≤ 1
2 ≤ 2 for all k ∈ N, and by Corollary 2.6, c ∈M .

Looking back at Examples 2.1, 2.2, and 2.3, we see that 0 ∈M and −0.7−0.3i 6∈M , with Corollary 2.6
explaining the presence of the circle C(0, 2) in Figure 2. Finally, ω ∈ M , and in fact all solutions to
(c2 + c)2 + c = 0 belong to M , since the iterates stay bounded due to their cyclic nature.

It was conjectured by Mandelbrot himself in 1985 [Mandelbrot, 1985] that the boundary of the Man-
delbrot set, which has a fractal nature, has Hausdorff dimension 2, and this result was later proved by
Shishikura [Shishikura, 1998].
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Julia sets

What if we are to start iterating from a point in the dynamical plane other than z = 0? In particular,
which choices of initial point will iterate to infinity for a given fc ∈ F , and which will stay bounded?
We are motivated to define the filled-in Julia set of fc below:

Definition 2.8 K(c) = {z ∈ C :
∣∣f◦kc (z)

∣∣ 6→ ∞ as k →∞}
so-called because we will be especially interested in its boundary, the Julia set of fc, again defined
below:

Definition 2.9 J(c) = ∂K(c).

Note that K(c) and J(c) live in the dynamical plane, in contrast to M . So, K(c) is the set of initial
points from which we may iterate fc and stay bounded, while J(c) consists of points in the plane that
are arbitrarily close to initial points that stay bounded, and initial points that don’t. We have another
(fairly tautological...) characterisation of the Mandelbrot set as M = {c ∈ C : 0 ∈ K(c)}.

Figure 4: Left: The Julia set for z 7→ z2, as in Example 2.1. In this case, J(0) = C(0, 1).

Right: The Julia set for z 7→ z2 +ω, as in Example 2.2. This Julia set is known as the Douady rabbit.

It may be shown that J(c) is non-empty and compact for any c ∈ C. The following is of dynamical
importance.

Proposition 2.10 Let fc ∈ F . Then J(c) = fc(J(c)) = f−1c (J(c)) = {z ∈ C : fc(z) ∈ J(c)}. That is,
J(c) is completely invariant under fc.

Proof. z ∈ C stays bounded under iteration if and only if fc(z) stays bounded under iteration. Note
that f−1c (z) will consist of two complex numbers, unless z = c. In any case, the elements of f−1c (z) stay
bounded under iteration if and only if z does, since they both go to z. Therefore, z ∈ K(c) if and only if
fc(z) ∈ K(c), if and only if f−1c (z) ⊆ K(c). This is equivalent to saying K(c) = fc(K(c)) = f−1c (K(c)).
Given the filled-in Julia set is not changed at all by forward or backwards iteration, the same must be
true of its boundary J(c).

2.3 Connectivity and the Mandelbrot set

Notions of connectivity in both the dynamical and parameter planes are at the heart of the key questions
in holomorphic dynamics, which is something you might not expect at first. We look in particular at
the notion of a connected space, allowing for a discussion of the ‘dichotomy’ imposed on Julia sets for
quadratic maps. Then we move on to local connectivity, for now only defining it and looking at a few
examples. In later sections, we will see the huge ramifications of local connectedness in the parameter
space.

Definition 2.11 A topological space X is connected if there is no pair of non-empty, disjoint open
sets U, V such that X = U ∪ V .
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Example 2.12 Let A ⊆ R. Then A is connected if and only if A is an interval.

It is a deep result of Douady and Hubbard that M is connected. We note it now. A proof may be
found in Chapter 8 of [Douady and Hubbard, 1985a].

Theorem 2.13 M is connected.

The Julia sets pictured in Figure 4 are both connected. We note that both have corresponding para-
meters belonging to M .

A subset of a space X is connected if it is connected as a subspace. In any space, the singletons
(subsets consisting of a single element) are always connected subsets, giving reflexivity for the following
equivalence relation.

Definition 2.14 Let X be a topological space. Define an equivalence relation ∼ on X by x ∼ y if
and only if there is a connected subspace of X that contains x and y. Thus, we partition the space
into maximal connected subsets, that we call connected components.

So, a space X is connected if and only if x ∼ y for all x, y ∈ X. We might instead have the opposite
situation.

Definition 2.15 A topological space X is totally disconnected if x ∼ y ⇒ x = y. That is, if the
connected components are the singletons, and no two distinct points belong to the same connected
component.

In a totally disconnected space, the only connected subsets are the singletons and (vacuously) the
empty set.

Example 2.16 (Cantor middle-third set) In the following, for a set A and an x ∈ R, define
x+ A

3 = {x+ a
3 : a ∈ A}. Let C0 = [0, 1], and for each n ∈ N, define the set

Cn =
Cn−1

3

⋃(
2

3
+
Cn−1

3

)
Then the Cantor middle-third set is defined as

C =
∞⋂
n=0

Cn

We can think of this construction as taking [0, 1], and removing its middle third. Then, we remove the
middle thirds of the two resulting subsets. Repeating this process countably many times, we obtain C.
It is a famous set in mathematics, due to the following properties: it is compact, totally disconnected
and perfect (it is closed and has no isolated points). In fact, any set that satisfies these 3 properties
is homeomorphic to C. As a result, we refer to any such set as a Cantor set, and all Cantor sets are
topologically ‘the same’.

Let c < −2. Then c is not in M , by Corollary 2.6. The Julia set J(c) will be a Cantor set contained
in the real line. The Julia set from Example 2.3, corresponding to the parameter −0.7− 0.3i 6∈M , is
totally disconnected, and in fact a Cantor set. Click here for an animated visualisation of this Julia
set.

The remarkable observation of Julia [Julia, 1918] and Fatou [Fatou, 1919] was that these examples are
no coincidence. The following great theorem gives rise to an alternative definition of the Mandelbrot
set which, on the face of it, is radically different to how we have been thinking thus far.

Theorem 2.17 Let fc ∈ F . Suppose 0 ∈ K(c), i.e. f◦kc (0) 6→ ∞. Then J(c) is connected. Suppose
instead 0 6∈ K(c), so that f◦kc (0)→∞. Then J(c) is not connected, and is in fact a Cantor set.

8
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This is often referred to as the Dichotomy theorem, as it gives rise to a clear dichotomy of Julia sets for
the functions of F , where they are either composed of a single piece, or of uncountably many disjointed
parts, and (incredibly) this is determined by the behaviour of the critical point under iteration by the
function in question. Note that the connectivity of J(c) and K(c) are equivalent.

Corollary 2.18 M = {c ∈ C : J(c) is connected}.

As a result of this corollary, the Mandelbrot set is sometimes referred to as the connectedness locus of
the quadratics.

Our last definition here is that of simple connectivity. The concept will be of no immediate use to us,
but will become important later (see Section 4.3). We give a super informal definition, since to do
otherwise would bring us firmly off-topic for no real benefit. Later on, in Corollary 4.7, we will have a
more rigorous characterisation of simple connectivity, which will be entirely sufficient for our purposes.

Definition 2.19 A topological space X is simply connected if it is ‘path connected’, and if it ‘contains
no holes’. In the particular case of subsets of the complex plane, this means that we may connect any
pair of points in the space by a curve whose image is contained in the space, and that any loop drawn
in the space may be continuously shrinked to a point.

Example 2.20 The complex plane C is seen to be simply connected, as is the unit ball B(0, 1).

Local connectivity

We are as far as the ‘M’ of ‘MLC’. Now we turn to the ‘LC’, and investigate its nuances with some
examples.

Definition 2.21 A topological spaceX is locally connected at x ∈ X if, for every open set U containing
x, there is a connected open set V ⊆ U that still contains x. X is a locally connected space if it is
locally connected at all x ∈ X.

Note that U and V are open sets in the space X. It is clear that we will have local connectedness at
a point if there are arbitrarily small open neighbourhoods of that point which are connected.

Perhaps surprisingly, connectedness and local connectedness are logically independent of one another,
in that whether or not a space is connected has no bearing on whether or not it is locally connected,
and vice versa. We illustrate this through the following four examples.

Example 2.22 The set [0, 1] is connected and locally connected. To see it is locally connected, let x ∈
[0, 1], and let U be some open neighbourhood of x in [0, 1]. Then U open implies [0, 1] ∩ (x−ε, x+ε) ⊆ U
for some ε > 0. But then this interval is a connected open set containing x, that is contained in U , so
that [0, 1] is locally connected at x. Since x was arbitrary, the space [0, 1] is locally connected.

Example 2.23 The Cantor set C, as in Example 2.16, is neither connected nor locally connected. In
fact, a totally disconnected space is locally connected if and only if it is discrete. For, given a point x in
a totally disconnected space X, the only connected subset of X which contains x is {x}, so that points
can have connected neighbourhoods at all if and only if all the singletons are open neighbourhoods, and
this is equivalent to the space being discrete. Conversely, if the space is discrete, then these one-point
neighbourhoods are clearly arbitrarily small open neighbourhoods.

Example 2.24 The set (−1, 0) ∪ (0, 1) is not connected, by construction, but is locally connected by
the same argument as in Example 2.22.

We have to work a little bit harder to give a space that is connected but not locally connected, but
it’s well worth it.
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Example 2.25 (Topologist’s sine curve) Consider the continuous function f : (0, 1]→ R given by
f(x) = sin 1

x , and in particular its graph G = {〈x, f(x)〉 : x ∈ (0, 1]}, considered as a subspace of R2.
Since the graph of a continuous function is homeomorphic to its domain, G is homeomorphic to the
interval (0, 1], and in particular is connected. Note also that the closure of G is

G = G ∪ ({0} × [−1, 1])

since for any 〈0, t〉 ∈ {0} × [−1, 1], the sequence {〈 1
sin−1(t)+2πn

, t〉}n∈N in G tends to 〈0, t〉. G is called
the topologist’s sine curve, and serves as an interesting example in topology.

We will first show that it is connected. Suppose otherwise, so that G = A ∪ B for open, disjoint and
non-empty A,B ⊆ G. Note that G ⊆ G implies that G = G ∩ G = (G ∩A) ∪ (G ∩B). But G is
connected, so that one of the sets in this union must be empty. Without loss of generality, suppose
G ∩ A = ∅. Now, A is non-empty, so that there is some a ∈ A ⊆ G. Since a 6∈ G, it must be a
limit point of G, and so any neighbourhood of a has non-trivial intersection with G. But a belongs to
the open set A, so that there is an open neighbourhood U of a which is contained in A and therefore
disjoint from G. We have a contradiction, and thus G is connected.4

However, G is not locally connected at any point 〈0, t〉 for t ∈ [0, 1], and thus G is not a locally
connected space. For example, consider a sufficiently small open ball about 〈0, 0〉, intersected with G.
The resulting set consists of some part of the y-axis, and infinitely many segments of G, each cut off
from each other. Such a set is not connected, and thus G does not contain arbitrarily small connected
open neighbourhoods about 〈0, 0〉, as required.

Figure 5: Left: The topologist’s sine curve G, shown in full on a section of R2. It consists of the
graph of sin 1

x , along with the closed interval between −1 and 1 on the y-axis.

Right: We zoom in near the origin. The infinitely tight ‘squeezing up’ of the space towards the points
that are not locally connected is typical of connected spaces that are not locally connected - see the

‘infinite broom’, or the cross-section of the cubic connectedness locus in Figure 6.

The local connectivity of the Mandelbrot set is not to be taken for granted. To demonstrate this, we
give examples of compact, connected analogues to the Mandelbrot set for higher-degree polynomials,
which are not locally connected.

Example 2.26 For each a, b ∈ C, define the cubic polynomial ga,b : C→ C by ga,b(z) = z3− 3a2z+ b.
Similar to the quadratic case, these functions describe the dynamical behaviour of all complex cubics,
since every cubic is affine conjugate to one of them. Also in parallel to the quadratic case, this is a
good choice of functions to look at, since it has critical points a and −a, of a nice form (in particular,
the critical points average to zero - a polynomial with this property is said to be centred). There is a
subtlety though in that we don’t quite have each cubic being affine conjugate to a unique ga,b, since

4In fact, we have proven something more general. We used only the fact that G was the closure of a connected set,
and so we may conclude that the closure of a connected set is always connected.
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ga,b and ga,−b are affine conjugate. We quotient this out, defining G = {ga,b : 〈a, b〉 ∈ C × C}, and
considering the parameter space G/∼, where ∼ identifies ga,b and ga,−b. A typical element of the space
is [g] = {g, g′} ∈ G/∼, with g and g′ having the same long term dynamical behaviour.

Recall the Dichotomy Theorem [2.17] for our family of complex quadratics. The result of Fatou
and Julia was actually more general. We may define Julia sets in an analogous way for a cubic (or
indeed any function), as the boundary of the set of initial points from which iterates stay bounded.
Accordingly, the general result is that the Julia set is connected if (and only if) all of the critical points
are bounded under iteration by the map in question, and that the Julia set is a Cantor set if all of
the critical points go off to infinity under iteration. In the quadratic case, where there is only one
critical point, a dichotomy is forced. But for our cubics, with two critical points, it may be the case
that the two critical points have different dynamical behaviour - though even in this case, the Julia set
is still not connected. Thus, our dichotomy is slightly weakened, with the Julia set connected if both
critical points stay bounded, and disconnected otherwise. This suffices, though, to define the cubic
connectedness locus

C3 = {[g] ∈ G/∼ : The Julia set of g is connected}
= {[g] ∈ G/∼ : |g◦k(a)| 6→ ∞ and |g◦k(−a)| 6→ ∞}

Branner and Hubbard [Branner and Hubbard, 1988] showed that C3 is compact and connected. Then,
in his thesis, Pierre Lavaurs proved that the set was not locally connected [Lavaurs, 1989], confirming
an earlier observation of Milnor from computer pictures. For a proof that is readily available online,
see Appendix B of [Epstein and Yampolsky, 1999].

With a similar method, we may construct the connectedness locus Cd of the complex polynomials of a
given degree d ∈ N for any d ≥ 2, by starting with the space of all degree-d polynomials, and identifying
all affine conjugate elements, and then taking the subset of conjugacy classes whose elements have a
connected Julia set. For each natural number d ≥ 2, it is possible to parametrise the affine conjugacy
classes of the degree-d polynomials by d− 1 complex variables, and in this way, we may view Cd as a
subset of Cd−1. Note that C2 is the Mandelbrot set. If d ≥ 3, then Cd is not locally connected.5

Conjecture 1 (MLC) The Mandelbrot set M is locally connected.

Figure 6: Some part of a cross-section of C3, where local connectivity fails in a similar way to
Example 2.25. This image was taken from [Milnor, 1992], where it is Figure 19 on page 15.

5It is worth noting that the question of local connectivity of Cd is not as important for d 6= 2, because in these
cases, it does not give us density of hyperbolicity in the corresponding parameter spaces (see Section 3.2 for exposition
on density of hyperbolicity in the case d = 2).
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3 An Introduction to Complex Dynamics Theory for Quadratic Maps

"To study complicated phenomena through their simplest
incarnation; this is often the role of the mathematician."

—Adrien Douady

Before looking at the mathematics that has gone into attempts to obtain a proof of the conjecture,
and the mathematics that would result from such a proof, we must build our theory a great deal.
We introduce the fundamental ideas of the world of complex dynamics, specialised to our family
F of quadratic maps. Note that a lot of the theory here can be generalised to other families of
complex functions, most notably rational functions - for a more general treatment, see [Beardon, 2000],
[Carleson and Gamelin, 1996] or [Milnor, 1990]. This section is based in large parts on the excellent
article ‘The Mandelbrot Set’ by Bodil Branner in the book [Devaney and Keen, 1997].

3.1 Orbits, periodic points, and multipliers

The sequences of iterates O(c, z) :=
(
f◦kc (z)

)
k∈N is called the orbit of z ∈ C under fc. Note that for

k = 0, we are taking f◦kc (z) = z. Given Theorem 2.17 and its consequences for the family F , the orbit
O(c, 0) is of particular interest, and we will call it the critical orbit.

Points whose orbits repeat, that is z ∈ C such that f◦lc (z) = f
◦(l+m)
c (z) for some l ∈ N,m ∈ Z+ (and

where we may freely take m to be the minimal such integer), are of particular interest, and are called
pre-periodic points. If l = 0, the point is periodic, otherwise it is strictly pre-periodic. In this case the
orbit is simply described, since

O(c, z) =
(
z, f(z), . . . , f◦lc (z), f◦(l+1)

c (z), . . . f◦(l+m−1)c (z), f◦lc (z), f◦(l+1)
c (z), . . .

)

The sequence
(
f◦lc (z), f

◦(l+1)
c (z), . . . f

◦(l+m−1)
c (z)

)
is called a cycle, and its length m is the period of

the cycle. For a cycle of period 1, the solitary point of which it consists is called a fixed point. Note
that every point in a cycle is necessarily periodic, and has the same orbit as the other points in its cycle
(modulo a shifting of the sequence). Note also that every fc ∈ F has infinitely many cycles, since the
Fundamental Theorem of Algebra guarantees roots to the polynomial equation f◦lc (z) = f

◦(l+m)
c (z).

Consider the action of iterating points in C by the m-fold composition of fc. We obtain a function
f◦mc : C → C. Let (z1, . . . , zm) be a period m cycle of fc. The Taylor series of f◦mc at a periodic
point gives us information about the iterative behaviour of nearby points. In particular, let r > 0 be
sufficiently small, and let t ∈ B(z1, r) be a point in the plane ‘near’ the periodic point z1. Then

f◦mc (t) = f◦mc (z1) + (f◦mc )′ (z1) · (t− z1) + [(t− z1)2 and higher order terms]
≈ z1 + (f◦mc )′ (z1) · (t− z1)

Thus, if
∣∣(f◦mc )′ (z1)

∣∣ is smaller than 1, f◦mc (t) is closer to z1 than t was, and f◦2mc closer still, etc. If
instead

∣∣(f◦mc )′ (z1)
∣∣ is larger than 1, t is ‘pushed away’ from z1, with each iterate of f◦mc going further

and further away. We feel sufficiently motivated to make a definition.

Definition 3.1 The multiplier of a periodic point z of period m is ρ := (f◦mc )′ (z).

In fact, we will speak of the multiplier of a cycle, as opposed to of a particular periodic point, since
the multipliers of distinct points in a cycle are equal. This is due to the following result, which allows
for easy calculation of the multiplier.

Proposition 3.2 Let (z1, . . . , zm) be a cycle of fc ∈ F , and let z1 have multiplier ρ. Then

ρ =
m∏
k=1

f ′c(zk) = 2m
m∏
k=1

zk
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Proof. By the chain rule,

(f◦mc )′ =
(
fc ◦ f◦(m−1)c

)′
=
(
f ′c ◦ f◦(m−1)c

)
·
(
f◦(m−1)c

)′
= . . . =

(
f ′c ◦ f◦(m−1)c

)
·
(
f ′c ◦ f◦(m−2)c

)
· . . . ·

(
f ′c ◦ fc

)
· f ′c

Therefore,
(f◦mc )′ (z1) =

(
f ′c

(
f◦(m−1)c (z1)

))
· . . . · f ′c(z1)

= f ′c(zm) · . . . · f ′c(z1)

Up to this point, the proof is applicable to arbitrary functions. Since we are working in particular with
the family of maps F , we may go further. For any c, z ∈ C, f ′c(z) = 2z, so that

(f◦mc )′ (z1) =
m∏
k=1

(2zk) = 2m
m∏
k=1

zk

Recalling our earlier observations that nearby points are sucked in or pushed out depending on the
size of the multiplier, and since all points in a cycle have the same multiplier, we are able to classify
cycles accordingly.

Definition 3.3 Let (z1, . . . zm) be a cycle of fc ∈ F that has multiplier ρ. Then the cycle, and the
periodic points z1, ..., zm, are

(i) attracting if |ρ| < 1,

(ii) indifferent if |ρ| = 1, or

(iii) repelling if |ρ| > 1.

Further, if ρ = 0, we say the cycle and its points are super-attracting. By Proposition 3.2, a cycle
(z1, ..., zm) is super-attracting if and only if zj = 0 for some 1 ≤ j ≤ m.

Indifferent cycles have |ρ| = 1, so that ρ = e2πit for some t ∈ R/Z (i.e. the set of points on the unit
circle, parametrized from 0 to 1). If t ∈ Q/Z, we say the cycle is rationally indifferent or parabolic,
and if t 6∈ Q/Z, we say the cycle is irrationally indifferent. The special case of a parabolic cycle with
multiplier exactly 1 is called a primitive parabolic cycle.

Example 3.4 Recall Example 2.2. We considered a solution ω ≈ −0.12+0.745i to (c2+c)2+c = 0, so
that O(ω, 0) =

(
0, ω, ω2 + ω, 0, ...

)
. Thus, we have a cycle (0, ω, ω2 + ω), which in particular contains

the critical point z = 0, and so must be super-attracting. In this context, Figure 1 makes sense.
Starting at z = 0.2, the iterates are attracted towards and converge to our length 3 cycle. Note that
for the below picture, we have actually perturbed the parameter as well, since ω is irrational. We will
soon discuss hyperbolic components, and how slight perturbations of parameters with attracting cycles
gives only slight perturbations of orbits.
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Figure 7: We plot O(ω, 0.2), overlayed on the Julia set J(ω). The orbit is pulled towards the
super-attracting cycle

(
0, ω, ω2 + ω

)
.

Example 3.5 Consider the point c = 1
4 . From the proof of Theorem 2.7, c ∈ M . Also, fc

(
1
2

)
=(

1
2

)2
+ 1

4 = 1
4 + 1

4 = 1
2 , so that

O

(
c,

1

2

)
=

(
1

2
,
1

2
,
1

2
, ...

)
and we have a fixed point of fc. Its multiplier is f ′c

(
1
2

)
= 2

(
1
2

)
= 1, so that in fact 1

2 is a primitive
parabolic fixed point. The parameter c is a ‘messy’ point of M , in part because of the multiplier of
its fixed point. Calculating and generating images of its Julia set is more difficult than usual, since
it contains the indifferent point, around which iterates move very slowly. One popular method of
generating images of Julia sets is to ‘iterate backwards’ by taking pre-images of some repelling periodic
point on the Julia set. This necessarily fills out the Julia set (in that the resulting set of points is
dense in the Julia set), but will be particularly slow if we were to apply it to J(14), since progress will
be slowed whenever we are near to z = 1

2 .

We note also that c is on the boundary of M . Certainly there exist points of M in any neighbourhood
of c, since B(0, 14) ⊆ M . We claim that for real c′ > 1

4 , we necessarily have c′ 6∈ M , since for any
k ∈ Z+

f◦kc′ (0)− f◦(k−1)c′ (0) = fc′
(
f
◦(k−1)
c′ (0)

)
− f◦(k−1)c′ (0) =

(
f
◦(k−1)
c′ (0)

)2
+ c′ − f◦(k−1)c′ (0) ≥ c′ − 1

4

and therefore
f◦kc′ (0) ≥ f◦(k−1)c′ (0) +

(
c′ − 1

4

)
≥ f◦(k−2)c′ (0) + 2

(
c′ − 1

4

)
...

≥ fc′(0) + (k − 1)

(
c′ − 1

4

)
Thus, given that c′− 1

4 > 0, we have f◦kc′ (0)→∞ as k →∞, and we may conclude that
∣∣f◦kc′ (0)

∣∣→∞
as k →∞, as required.
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Figure 8: The ‘cusp’ c = 1
4 of the Mandelbrot set. It is the root of the main cardioid (See

Section 3.2). Given the infinity of limbs collapsing upon it, it can be a harsh parameter to get a
handle on. Thankfully, we do have local connectivity here - see Theorem 4.24.

As a quick aside, we are fairly close to a full description of M ∩ R. We have that |c| > 2⇒ c 6∈M by
Corollary 2.6, that B(0, 14) ⊆ M by Theorem 2.7, and now that c > 1

4 ⇒ c 6∈ M . Since O(−2, 0) =
(0,−2, 2, 2, ...) is clearly a bounded orbit and so −2 ∈ M , we might guess that M ∩ R = [−2, 14 ], and
indeed this may be shown to be the case.

We end the section by looking at a class of parameters that are easily defined, given the significant
role they play in the study of M .

Definition 3.6 Suppose fc ∈ F is such that the critical point z = 0 is strictly pre-periodic, that is,
there is some l,m ∈ Z+ such that f◦lc (0) = f

◦(l+m)
c (0), and f◦kc (0) = 0 if and only if k = 0. Then c is

called a Misiurewicz point.

Example 3.7 We observed earlier that M ∩ R = [−2, 14 ], and also that O(−2, 0) = (0,−2, 2, 2, . . .).
Therefore, −2 lies on the boundary of M , and is a Misiurewicz point. It may be shown that the
filled-in Julia set is K(−2) = [−2, 2]. This has no interior, and is its own boundary in C, so that
J(−2) = K(−2).

Example 3.8 Another simple example of a Misiurewicz point is c = i, since O(i, 0) = (0, i,−1 +
i,−i,−1 + i, ...). What does the Julia set look like?

Figure 9: The filled-in Julia set K(i), which has no interior and is equal to its boundary, so that
J(i) = K(i).
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The previous examples are no coincidence. It may be shown that, for a Misiurewicz parameter c, we
must have J(c) = K(c). In this case, the Julia set is called a dendrite.

It is clear from the definition that all Misiurewicz points belong to M . In fact, Douady and Hubbard
showed that Misiurewicz points must lie on the boundary of M . They showed also that these points
are dense on the boundary, and that the cycle on to which 0 exactly falls is necessarily repelling (see
[Douady and Hubbard, 1985a]).

The following is certainly worth noting. It was first proved by Yoccoz, and is first stated explicitly in
the literature in [Lei, 1992]. For an english-language proof, see Theorem 6.4 of [Schleicher, 1999].

Theorem 3.9 Let c ∈M be a Misiurewicz parameter. Then M is locally connected at c.

We make one last remark regarding Misiurewicz points. The geometric similarities between Julia sets
and the Mandelbrot set are remarkable and well-known. At Misiurewicz points, these similarities are
at their most pronounced. Let c ∈M be a Misiurewicz point. Tan Lei [Lei, 1990] proved that M and
J(c) are both self-similar as we zoom into c ∈ C in either set. Furthermore, the neighbourhoods of c
in M and J(c) can (in a precise sense) be made to look arbitrarily similar to each other, if we zoom
in enough. Note that since J(c) = K(c), we have by definition that 0 ∈ J(c), so that c ∈ J(c) by
Theorem 2.10, as you would hope given the statement of this paragraph!

Figure 10: The point c ≈ −0.1011 + 0.9563i is a Misiurewicz point. At the top, we have an image of
the dendrite J(c), with a zoomed picture of a neighbourhood of c. On the bottom, we have M , and a

zoomed picture of a neighbourhood of c. This picture is taken from page 887 of the book
[Peitgen et al., 1992].
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3.2 Hyperbolicity and the Douady-Hubbard-Sullivan Theorem

Recall that for any fc ∈ F , there are infinitely many cycles. However, the family F in particular is
very restricted in the number of attracting cycles its elements can possess. This is a consequence of the
following theorem, proved by Fatou in 1905, which will lead us to a discussion of hyperbolicity and its
relationship with the MLC conjecture. Note also that this theorem reinforces the idea that the critical
orbit has a particular significance.

Theorem 3.10 Let fc ∈ F , and let (α1, . . . , αm) be any attracting cycle of fc. Then the critical point
z = 0 is attracted towards the cycle, i.e. there exists l ∈ N such that

lim
k→∞

(
f◦(l+n+km)
c (0)

)
= αn

for each n = 1, ...,m.

We record a couple of the immediate consequences of Theorem 3.10.

Corollary 3.11 Let fc ∈ F . Then fc has at most one attracting cycle.

Proof. By Theorem 3.10, the critical point is attracted towards all attracting cycles of fc. If there
were two or more attracting cycles, the critical point would have to tend to both, which is clearly
impossible.

Corollary 3.12 Let fc ∈ F possess an attracting cycle, say (α1, . . . , αm). Then c ∈M .

Proof. By Theorem 3.10, there is some k ∈ N such that
∣∣f◦lc (0)

∣∣ < max {|α1|+ 1, ..., |αm|+ 1} for all
l > k, and from this bound we may conclude c ∈M .

In the more general context of other families of functions, we say a map is hyperbolic if all critical
points tend to an attracting cycle under iteration. This notion is equivalent to other definitions of
hyperbolicity appearing in the literature, if we extend the dynamical space to the Riemann sphere
Ĉ := C ∪ {∞}, and define fc(∞) = ∞ to be an attracting fixed point6. Then, a parameter c and its
associated quadratic are hyperbolic if and only if c 6∈M , or c ∈M and fc has an attracting cycle.

For over a century, dynamicists have been trying to answer the following question, which may also be
asked for other classes of maps such as the ‘Multibrot’ families {f : z 7→ zd + c | c ∈ C} for a fixed
integer d > 2 and the family of exponentials {f : z 7→ ez + c | c ∈ C}, but which we ask only for the
family F :

Conjecture 2 (Density of Hyperbolicity for complex quadratic maps) Hyperbolic parameters
are dense in the paramater plane of the family F . That is, for each c ∈ C, and for all ε > 0, there
exists a parameter c′ ∈ B(c, ε) such that fc′ is a hyperbolic map.

Generally, the dynamics of hyperbolic maps are well-understood. Thus, if the hyperbolic maps are
dense in a given space, we can approximate every map arbitrarily well by a hyperbolic map, whose
dynamics we understand. Chapter 2 of [McMullen, 1994b] has a good, accessible exposition of this.
Chapter 14 of [Milnor, 1990] is, meanwhile, more in-depth.

Since all parameters in the complement of M are hyperbolic, we focus in specifically on elements of M
that are hyperbolic.

By Theorem 3.10 and its corollaries, we may classify these parameters by the period of their unique
attracting cycle. The most simple case, then, is that of parameters whose quadratics possess an
attracting fixed point. Define W1 = {c ∈ C : fc has an attracting fixed point}. It is easy to proceed

6At infinity, we define the multiplier as the reciprocal of the usual definition. We should also point out that ∞ is
excluded from consideration in Corollary 3.11.
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algebraically. Let z be the attracting fixed point. We must have z2 + c = z, with the multiplier
|ρ| = |2z| < 1. Then we must have

z =
1±
√

1− 4c

2
⇒ |ρ| = |2z| =

∣∣1±√1− 4c
∣∣ < 1

and we must necessarily take the negative root, since
√

1− 4c > 0 (taking the principal root). Con-
versely, any such c satisfying the inequality

∣∣1−√1− 4c
∣∣ < 1 must be a parameter with an attracting

fixed point, since we may then use our formula to find the fixed point z, and by definition its multiplier∣∣1−√1− 4c
∣∣ makes it attracting. Therefore, W1 = {c ∈ C :

∣∣1−√1− 4c
∣∣ < 1}. Refer to Figure 11

for a look at W1, and its uncanny familiarity... Note the boundary of W1 consists precisely of the
parameters that possess indifferent fixed points, an example of which being c = 1

4 as in Example 3.5.
Note also that W1 does therefore not contain any of its boundary points, so is open.

The next most simple case is those parameters whose quadratics possess an attracting cycle of period 2.
DefineW2 = {c ∈ C : fc has an attracting period 2 cycle}. Again, we are able to proceed algebraically.
Let (z, fc(z)) be the attracting cycle. We require

f◦2c (z) = z ⇐⇒ fc(z
2 + c) = (z2 + c)2 + c = z

⇐⇒ z4 + 2cz2 − z + c2 + c = 0

⇐⇒ (z2 − z + c)(z2 + z + c+ 1) = 0

But z2 − z + c = 0 if and only if z2 + c = z, if and only if z is a fixed point. Thus, c has an attracting
cycle (z, fc(z)) if and only if z2 + z + c + 1 = 0, with the multiplier ρ satisfying |ρ| < 1. We proceed
using Proposition 3.2 to calculate the multiplier, and then perform suitable algebraic rearranging and
substituting using our quadratic equation:

ρ = 4zfc(z) = 4z(z2 + c) = 4z(−z − 1) = −4(z2 + z) = 4(c+ 1)

Thus, the inequality that describes W2 is |4(c+ 1)| < 1. Letting c = x+ yi and rearranging, we obtain

(x+ 1)2 + y2 <

(
1

4

)2

so that W2 = B
(
−1, 14

)
. Again, note that the boundary consists of those points with ρ = 1, and that

our set is open.

Consider these two subsets of the interior of M that we have located. They are disjoint, but they
‘touch’ at a single point, in that W1 ∩ W2 = {−3

4}. As a result, c = −3
4 may be described as a

bifurcation point of M . If we were to start in W1, and move c over in a continuous fashion towards
W2, we would find the multiplier of the attracting fixed point gradually tend towards 1 (in this sense,
the point is becoming ‘less’ attracting), and at the point of crossing c = −3

4 , this fixed point becomes
indifferent. As we enter W2, the fixed point will now be a repelling one, while an attracting cycle of
period 2 has now appeared.7

All of these observations hold in a far more general sense. In fact, for any k ∈ Z+, we may find open
sets (in general, we get multiple disjoint open sets for a given k) consisting precisely of all parameters
whose quadratics possess an attracting cycle of period k. Any part of M with a non-empty interior
that can be seen in Figure 3 with the naked eye is one of these open sets. Further, they are all disjoint
from one another, so that these subsets we describe are (at least some of) the connected components of
int(M), and they are accordingly named the hyperbolic components of M . Note that we would not be
able to ‘walk’ between all hyperbolic components freely, via bifurcation points, since some hyperbolic
components are within mini-Mandelbrot copies, as in Figure 3.

7This example is the first step in the Mandelbrot set’s version of a universal phenomenon of bifurcation theory,
closely related to the famous Feigenbaum constant. We return to this in Example 4.16.
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Figure 11: The hyperbolic component W1, consisting of precisely those parameters whose quadratic
possesses an attracting fixed point, forms the main cardioid of the Mandelbrot set, and is shown in

black. Similarly, the hyperbolic component W2 for period 2 cycles is shown in grey.

We again draw attention to the fact that the hyperbolic components W1 and W2 are special cases, in
that there is a single hyperbolic component for the parameters with attracting cycles with period 1
or 2. This is the case only in these two instances. For example, there are 3 hyperbolic components
for period 3 attracting cycles, and 65535 hyperbolic components for period 17 attracting cycles. This
sequence is recorded in the Online Encyclopedia of Integer Sequences as A000740.

We have in fact made progress in our great endeavour of showing local connectivity at all points of M !

Theorem 3.13 Let c ∈M be hyperbolic. Then M is locally connected at c.

Proof. Our supposition is equivalent to fc having some attracting cycle, say (α1, . . . , αm). An ap-
plication of the Implicit Function Theorem to the function G(z, c) = f◦mc (z) − z gives that there is
some r > 0 such that every parameter in B(c, r) has an attracting cycle. Thus, B(c, r) ⊆ M , and
c ∈ int (M). It follows thatM is locally connected at c, essentially because C itself is locally connected.
In particular, given any open set U in M that contains c, we can find an open ball in C centred at c
which is entirely contained in U and thus M , and so is certainly a connected neighbourhood of c in
M .

We will later show (Section 4.3) that M is locally connected at all points on the boundary of a
hyperbolic component. In the specific cases of W1 and W2, we saw that such points necessarily had
indifferent cycles. Our next step is to see that this holds for all hyperbolic components.

By the groundbreaking work of A. Douady, J. Hubbard and D. Sullivan in the 1980s, we may use the
multiplier of the attracting cycles in a hyperbolic component as a sort of roadmap of the component.
First, a definition is needed - conformal isomorphisms are an important type of mapping that preserve
some structure.

Definition 3.14 Let D,E ⊆ C be non-empty, connected and open. A conformal mapping f : D → E
is a mapping which ‘preserves angles’, in that any two intersecting curves drawn in D will have their
angle of intersection preserved by f . A conformal isomorphism is a conformal mapping which is also
a bijection. If there is a conformal isomorphism D → E, we say D and E are conformally isomorphic
or conformally equivalent.
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Figure 12: An illustration of a conformal mapping. Although the space is distorted, angles between
curves and lines are preserved by the mapping. This is demonstrated by the perpendicular gridlines,

which are still at right angles under the mapping. Picture taken from the Wikipedia article on
conformal mappings, and released into the public domain by its creator Oleg Alexandrov.

It may be shown that conformal equivalence is an equivalence relation. In Section 4.3, we will develop
a small bit of theory behind conformal mappings and isomorphisms - this will contextualise the below
result as well as the occasional reference we will make to these mappings throughout this section.

Theorem 3.15 (Douady-Hubbard-Sullivan Theorem) Let W be a hyperbolic component of M ,
and define the map ρW : W → B(0, 1) by ρW (c) = ρc, where ρc is the multiplier of the unique attracting
cycle of c ∈W . Then ρW is a conformal isomorphism. The map can be extended to a homeomorphism
W → D(0, 1).

At first, it seems that there is a difficulty in extending the map to the boundary, since the points on
the boundary do not have a unique attracting cycle (or any attracting cycle at all) whose multiplier
we can use. This is circumnavigated in the following way: As we approach a boundary point c ∈ C
via nearby points in W , the unique attracting cycle of period k ‘varies analytically’, in that small
perturbations of the parameter result in small perturbations of the locations of the k points in the
cycle, as well as a small perturbation of the multiplier of the cycle. This behaviour persists even as we
hit the boundary, so that we can take the limit of the multiplier as we approach c. As a result, since
ρW is approaching the boundary of the unit ball, we will have ρW (c) = e2πit for some t ∈ R/Z, and
fc will have an indifferent cycle of period k. The only exception to this is when t = 0 (equivalently
ρ = 1). This point of the hyperbolic component is called the root. There are two possibilities for a
root c of a hyperbolic component H, of period k: 1) It is the bifurcation point between two hyperbolic
components. In this case, H touches another hyperbolic component G, whose period m must divide
k. We will have H ∩G = {c}. As we approach c in H, points in the cycle partition themselves, with
each part of the partition consisting of points tending to a common limit. At c, each of these parts
coalesce into a single point so that the attracting cycle of k points becomes an indifferent cycle of m
points. 2) It is the cusp c = 1/4 of the main cardioid (see Example 3.5), or is the cusp of the cardioid
of some miniature homeomorphic copy of M within itself (see Section 4.2).

As a result, we are provided with a parametrization of the boundary γW : R/Z → ∂W given by
γW (t) = ρ−1W (e2πit). For a general boundary point γW (t) = ρ−1W (e2πit) of a given hyperbolic component
W , we will say γW (t) has internal angle t. The centre of W is the unique parameter in W whose
quadratic possesses a super-attracting cycle, that is ρ−1W (0). Given this is the point that the Douady-
Hubbard-Sullivan map identifies with the centre of the unit disc, our nomenclature makes sense.

A further consequence of Theorem 3.15 is that each hyperbolic component contains precisely one
parameter whose attracting cycle has a given multiplier ρ (for |ρ| < 1). Therefore, the number of
parameters inM whose quadratics possess an attracting cycle of a given period with a given multiplier
is exactly the number of hyperbolic components that consist of parameters with attracting cycles of
that period, so is given by the sequence A000740.

It seems as though the hyperbolic components are filling the interior of M , so it is natural to next ask
for a full description of the interior of M , that is, what are the maps with bounded critical orbit for
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which all nearby maps also have bounded critical orbit? There is a deep link, in fact an equivalence,
between this question and Conjecture 2. For, we have seen that all hyperbolic parameters that are
in M are in its interior. If the interior could be shown to consist only of hyperbolic parameters, this
would yield density of hyperbolicity, due to the following result.

Proposition 3.16 The interior of M is dense in M , i.e. int(M) = M .

Proof. See Section VIII, Theorem 1.5 of [Carleson and Gamelin, 1996].

Suppose instead that we find a non-hyperbolic parameter c ∈ int(M). Since it is in the interior of M ,
there is some ε > 0 such that B(c, ε) ⊆ int(M). This ball cannot contain any hyperbolic parameters,
else it would be contained in a hyperbolic component, contradicting non-hyperbolicity of c. Then
our parameter c does not have arbitrarily close hyperbolic parameters, and we do not have density of
hyperbolicity in the space of complex quadratics. We conclude:

Theorem 3.17 Conjecture 2 is equivalent to the statement

int(M) = {c ∈M : fc possesses an attracting cycle}

As outlined above, any non-hyperbolic parameters of int(M) would have to live inside a connected
component of int(M) consisting entirely of non-hyperbolic parameters. No such component has ever
been found. Given their elusive, hypothetical nature, these components are called ghost components.
By Theorem 3.18 below, finding a ghost component would disprove the MLC conjecture. It may be
shown that all parameters whose quadratics possess indifferent cycles belong to the boundary of M ,
so that any ghost component would consist of parameters whose cycles were all repelling.

The stated goal, and crowning achievement, of the acclaimed work [Douady and Hubbard, 1985a] is
to assume local connectivity of M and use this to disprove the existence of ghost components of M .
In this way, DHC was precisely the original motivation for the MLC conjecture.

Theorem 3.18 The MLC conjecture, if true, would imply density of hyperbolicity for complex quadratic
maps.

A proof of Theorem 3.18 will be sketched in Section 5.4.

3.3 The Böttcher mapping, equipotentials and external rays

Here, we will use the power of complex analysis and some of its biggest theorems to introduce the most
fundamental objects in tackling the MLC conjecture. We build up to a new characterisation of local
connectivity for M , and in doing so construct a parametrization of its boundary (assuming MLC).

The definitions we will eventually make in this section are in a sense motivated by the below result.

Proposition 3.19 Let K ⊆ C be compact. Then there exists a unique function GK : C\K → R
satisfying the following properties:

(i) GK is harmonic, that is we may write GK(x + iy) = u(x, y) + iv(x, y), where u, v : R2 → R
satisfy ∂2u

∂x2
+ ∂2u

∂y2
= 0,

(ii) GK(z)→∞ as z →∞, and more specifically, GK(z) ∼ log |z| as z →∞, and

(iii) GK(z)→ 0 as z → K (by which we mean, as min{|z − t| : t ∈ K} → 0).

The function GK is called the Green’s function of K.
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Now, recall that the filled-in Julia set K(c) of any fc ∈ F is compact. Then, we may define the function
Gc : C\K(c)→ R to be the unique Green’s function of K(c). We may continuously extend the domain
to all of C by setting Gc(z) = 0 for all z ∈ K(c).

It is, perhaps surprisingly, not difficult to obtain an explicit formula for (the extension of) Gc.

Proposition 3.20 Define log+ : [0,∞)→ R by

log+(x) =

{
0 if 0 ≤ x ≤ 1

log(x) otherwise

Then

Gc(z) = lim
k→∞

log+
∣∣f◦kc (z)

∣∣
2k

The function Gc defined above tells us how quickly iterates of fc are escaping to infinity at each point
z ∈ C.

There is a related function φc : C\K(c)→ C\D(0, 1) which is more useful to us. Its definition begins
by an application of the following theorem.

Theorem 3.21 (Böttcher’s Theorem) [Milnor, 1990]
Let f(z) = anz

n + an+1z
n+1 + . . ., where n ≥ 2, an 6= 0. Then there is a local holomorphic change

of coordinates w = φ(z) which conjugates f to the map w 7→ wn throughout some neighbourhood of
φ(0) = 0.

To use the theorem, we must extend fc to the Riemann sphere C ∪ {∞}, and consider fc in a neigh-
bourhood of ∞. Equivalently, consider fc(1/z) in a neighbourhood of 0. The Laurent series for this
function, appropriately translated, brings us to the setup of Theorem 3.21 with n = 2. Therefore, for
any c ∈ C, there exists a function φc defined in a neighbourhood of infinity, which conjugates fc to f0.
Douady and Hubbard [Douady and Hubbard, 1985a] showed that if c ∈M , then φc can be extended in
a unique way to a conformal isomorphism φc : C\K(c)→ C\D(0, 1), and in a way that maintains our
conjugation. In fact, φc is the unique conformal isomorphism C\K(c)→ C\D(0, 1) that conjugates fc
to f0. Thus, we have

φ−1c ◦ fc ◦ φc = f0 ⇒ φc (fc(z)) = f0 (φc(z)) = φc(z)
2

for all z ∈ C\K(c).

Even if c 6∈ M , we can still get somewhat of a handle on things. In particular, it may be shown that
c itself is in the domain of φc for all c ∈ C. This will be crucial shortly, when we look instead at the
parameter plane.

We call φc the Böttcher mapping of fc, and it is related to the Green’s function Gc in the following
way.

Proposition 3.22 Let c ∈ C, and let z ∈ C\K(c). Then

Gc(z) = log |φc(z)|

Corollary 3.23 φc(z) ∼ z as |z| → ∞.

Proof. Follows immediately from Proposition 3.22 and (ii) of Proposition 3.19.

We are now in a position to define probably the two most important objects regarding the MLC
conjecture. Consider φ−1c . Its domain is C\D(0, 1) = {z ∈ C : |z| > 1} = {re2πit : r > 1, t ∈ R/Z}.
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Definition 3.24 Fix r > 1. The dynamical equipotential of fc ∈ F , of potential r, is the set

Γc(r) = {φ−1c
(
re2πit

)
: t ∈ R/Z}

It is a closed, simple curve that loops around K(c). As r → 1, this loop is pulled tighter and tighter
around the boundary of K(c). The equipotential is the curve of all points of the dynamical plane at
which the iterates of fc are escaping to infinity at the same rate. Indeed, from the definition, we see
that Γc(r) = G−1c (log r), so that the equipotential consists of points that all have the same fixed value
under the Green’s function.

Proposition 3.25 Let fc ∈ F . Then fc(Γc(r)) = Γc(r
2).

Proof. Recall that φc(fc(z)) = φc(z)
2 for all z ∈ C\K(c). In particular, this relation will hold for all

points belonging to some equipotential, since all equipotentials are disjoint from K(c). Next, we have
the sequence of equivalences

z ∈ Γc(r)⇐⇒ z = φ−1c (re2πit) for some t ∈ R/Z
⇐⇒ φc(z) = re2πit for some t ∈ R/Z

⇐⇒ φc(z)
2 = r2e2πi(2t) = φc(fc(z)) for some t ∈ R/Z

⇐⇒ φc(fc(z)) = r2e2πit for some t ∈ R/Z
⇐⇒ fc(z) = φ−1c (r2e2πit) for some t ∈ R/Z
⇐⇒ fc(z) ∈ Γc(r

2)

where we have used the aforementioned relation, as well as the fact that φc is bijective. Note also
that the t in question need not stay fixed as we go from any one statement to the next or last one.
For example, if φc(z)2 = r2e2πi(2t) for some t ∈ R/Z, then we may in fact have φc(z) = −re2πit =
reπie2πit = re2πi(t+1/2). But then taking t+1/2 as our ‘new t’, the implication stated above still holds.

The result easily follows, for if x ∈ fc(Γc(r)), then x = fc(z) for some z ∈ Γc(r) which implies that
x = fc(z) ∈ Γc(r

2). Conversely, if x ∈ Γc(r
2), then set z =

√
x− c so that fc(z) = x ∈ Γc(r

2). Then
z ∈ Γc(r), so x = f(z) ∈ fc(Γc(r)), as required.

Figure 13: An equipotential of fω, wrapped around the Julia set J(ω). This image was generated
using Proposition 3.20 to approximate the value of Gω for each pixel in the image; if the value is close

enough to some constant, we colour the pixel black.
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Given the way the equipotential approximates J(c) as r → 1, we may ask what happens exactly in the
limit. We will consider this question from two viewpoints. Considering the limit in a local sense, i.e.
what happens to a single point on the equipotential curve as r → 1, gives rise to the definition of the
dynamical ray. Then, we will change to a more global mindset, and ask if the whole equipotential falls
exactly on J(c) in the limit. Through this consideration, we will land smack bang back in the middle
of a discussion of local connectivity, due to a theorem of Carathéodory and Torhorst.

So, the dynamical ray is given by fixing the angle t, and varying r. In other words, a dynamical ray is
a trajectory that is orthogonal to the equipotentials.

Definition 3.26 Fix t ∈ R/Z. The dynamical ray of fc ∈ F , of external angle t, is the set

Rc(t) = {φ−1c
(
re2πit

)
: r > 1}

A dynamical ray Rc(t) is a line in the complex plane that goes off to infinity, and at its other end gets
close to J(c). It is the pre-image under φc of a straight line going from the unit disc and off to infinity,
at an angle of 2πt.

Figure 14: The filled-in Julia set K(ω), pictured with various dynamical rays labelled by their
external angles. This image was taken from page 10 of [Douady and Hubbard, 1985a].

Proposition 3.27 Let fc ∈ F . Then fc(Rc(t)) = Rc(2t).

Proof. The proof is so entirely in parallel to the proof of Proposition 3.25 that we don’t even feel bad
about leaving it as an exercise to the reader! (Hint: show z ∈ Rc(t)⇐⇒ fc(z) ∈ Rc(2t).)

Let Rc(t) be some dynamical ray. It is a curve in the complex plane. If we parametrize the ray in the
obvious way, we obtain a bijection (1,∞)→ Rc(t), given by r 7→ φ−1c

(
re2πit

)
. If the limit

z0 = lim
r→1

φ−1c
(
re2πit

)
is well-defined, we say the dynamical ray Rc(t) lands at z0. Note that z0 is necessarily on the boundary
of K(c), that is z0 ∈ J(c). We may simply say that a dynamical ray lands, if we know such a point
exists but have no need to make explicit reference to it. We say a point z ∈ J(c) is accessible if there
is some dynamical ray which lands at it. An accessible point may be the landing point of multiple
dynamical rays.

Landing of rays is a central consideration of ours, due to the below version of Carathéodory’s Theorem
which was first presented and proven in the below form in the thesis of Marie Torhorst [Torhorst, 1921].

Theorem 3.28 Let K ⊆ C be compact and connected, with C\K having no bounded components.
Then a conformal isomorphism C\K → C\D(0, 1) extends as a homeomorphism to the boundary if
and only if K is locally connected.
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When we apply Theorem 3.28 to K(c), we get the following. Note that the local connectivity of J(c)
and K(c) is equivalent, because K(c)\J(c) = int(K(c)) is locally connected by a similar argument as
in the proof of Theorem 3.13.

Corollary 3.29 Let c ∈M . Then J(c) is locally connected if and only if K(c) is locally connected, if
and only if all dynamical rays land. Further, if any/all of these conditions hold, the landing points of the
dynamical rays Rc(t) vary continuously with t, and are given by the parametrization γc = φ−1c |C(0,1) :
C(0, 1)→ J(c) of the Julia set of fc.

As a result of Corollary 3.29, local connectivity of Julia sets takes on more importance, since it gives
a parametrization of the Julia set. This will be put to good use in Section 5.2.

Proposition 3.27 allows us to investigate the dynamics of dynamical rays of Julia sets. In particular,
suppose J(c) is locally connected. Then by Proposition 3.27 and since all dynamical rays land, the
dynamics of rays under the mapping fc is topologically conjugate to the angle-doubling map on C(0, 1).

It would be desirable to transfer this to the parameter plane, by defining equivalent notions to our
equipotentials and dynamical rays. At first, this seems difficult, since the dynamics of fc were essential
in constructing both the explicit form of the Green’s function and φc. However, M is still a compact
set in the complex plane, so there exists a Green’s function for M . In fact, GM is in a way induced by
the Green’s functions Gc, and similarly a conformal isomorphism φM is induced by the φc, all of which
we make explicit in the following result of Douady and Hubbard [Douady and Hubbard, 1985a]:

Theorem 3.30 Define two functions, in the parameter plane, by

GM : C\M → R, c 7→ Gc(c)

φM : C\M → C\D(0, 1), c 7→ φc(c)

Then GM is the Green’s function of M , and φM is a conformal isomorphism.

Recall our observation that c is in the domain of φc for all c ∈ C, so that φM is well-defined. Note also
that we have an explicit formula for GM by Proposition 3.20. Given M ’s unfathomable complexity, it
is remarkable that we can obtain closed forms for these important maps. As Douady and Hubbard put
it, "it is rather easier to find the conformal mapping of C\M than of the complement of a triangle".

Theorem 3.30 allows us to repeat our previous observations in the context of the parameter plane -
crucially, including a version of Corollary 3.29 for the parameter plane.

Definition 3.31 Fix r > 1. The parameter equipotential of M, of potential r, is the set

ΓM (r) = {φ−1M
(
re2πit

)
: t ∈ R/Z}

Definition 3.32 Fix t ∈ R/Z. The parameter ray of M , of external angle t, is the set

RM (t) = {φ−1M
(
re2πit

)
: r > 1}

A quick note on terminology. While we endeavour in this work to keep the distinction clear, the phrase
external ray is used to refer to any ray, dynamical or parameter. Similarly, the word equipotential is
used to refer to an equipotential in either context.

As in the dynamical case, parameter equipotentials are closed simple curves that loop around M ,
getting tighter as r → 1, while parameter rays are the orthogonal trajectories of the equipotentials. If
a parameter ray RM (t) approaches a well-defined limit c0 ∈ ∂M as r → 1, we say the ray lands at c0.
A point c ∈ ∂M is accessible if it is the landing point for some parameter ray. An accessible point may
be the landing point of multiple parameter rays.

Theorem 3.33 M is locally connected if and only if ∂M is locally connected, if and only if all parameter
rays land. Further, if any/all of these conditions holds, the landing points of the parameter rays RM (t)
vary continuously with t, and are given by the parametrization γM = φ−1M |C(0,1) : C(0, 1)→ ∂M of the
boundary of M .

It is known that all parameter rays of rational external angle do indeed land.
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Figure 15: The Mandelbrot set M , pictured with various parameter rays labelled by their external
angles. This image was taken from page 2 of [Schleicher, 1997], and was created by John Milnor.

Figure 16: A parameter equipotential, wrapped around M . This image was generated with the same
method as Figure 13, utilising Theorem 3.30 and Proposition 3.20 to approximate GM .
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4 The State of the Conjecture Today

Now that we are fully equipped with the necessary background, we are able to delve into the progress
of the last few decades. Note that we have already taken our first step in Theorem 3.13, where we
proved local connectivity for all parameters inside the Mandelbrot set whose quadratics possess an
attracting cycle.

Over the past 36 years, there have been tremendous efforts to whittle down the unsolved cases of the
conjecture. Grand mathematical machinery has been crafted to overcome wide expanses of difficulties,
with a resolution to the conjecture being provided for more and more classes of parameters. We take
a journey through time, recording a comprehensive timeline of results towards the MLC conjecture.
Afterwards, we focus in on (a very narrow subset of) the details of the related proofs.

4.1 Timeline of the Conjecture

1984 [Douady and Hubbard, 1985a]
Douady and Hubbard assume the Mandelbrot set is locally connected to prove density of hyperbolicity,
creating our eponymous conjecture and firing the starting pistol on a monumental body of work for
the following decades in holomorphic dynamics.

1985 [Douady and Hubbard, 1985b]
The concept of polynomial-like mappings is introduced by Douady and Hubbard to explain the self-
similarity and universality of the Mandelbrot set. This would become intimately linked with the MLC
conjecture via quadratic-like renormalization (see Section 4.3), due to the below result.

1989 [Hubbard, 1993]
With an enormous breakthrough, Yoccoz proves MLC at all parameters that are either: (i) not ql-
renormalizable, (ii) finitely ql-renormalizable, (iii) Misiurewicz points or (iv) on the boundary of a
hyperbolic component. The results are published a few years later by Hubbard. As a result, it remains
only to show local connectivity at parameters of quadratics that are infinitely ql-renormalizable.

1993 [Lyubich, 1997]
For the first time, due to Lyubich, we see parameters of infinitely ql-renormalizable quadratic maps
of bounded type for which MLC holds. In particular, he shows local connectivity at all parameters of
infinitely ql-renormalizable quadratic maps that satisfy the following two conditions:
(i) The hybrid classes of all the renormalizations of the map are picked from a finite number of

truncated secondary limbs, and
(ii) The combinatorial type of the map is sufficiently high on all levels, depending on the limbs chosen

in condition (i).

1995 [Jiang, 1995]
Jiang constructs a subset of parameters whose quadratics are infinitely ql-renormalizable and dense on
the boundary of M , for which MLC holds.

1999 [Schleicher, 1999]
Schleicher gives new proofs of local connectivity at Misiurewicz parameters and for parameters on the
boundary of a hyperbolic component, by introducing fibers of the Mandelbrot set.

2006 [Kahn, 2006]
Kahn proves that MLC holds at all paramaters whose maps are infinitely primitively ql-renormalizable
of bounded type.

2007 [Kahn and Lyubich, 2006]
Kahn and Lyubich demonstrate local connectivity at all parameters whose quadratics are infinitely ql-
renormalizable of primitive type and satisfy the decoration condition, which means the combinatorics
of the renormalization operators involved is selected from a finite family of decorations, which are parts
of M that are cut off from the rest of the set by a pair of parameter rays which land at the tip of a
satellite copy of M .
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2007 [Levin, 2007]
Levin publishes proofs of local connectivity for parameters whose quadratics are infinitely ql-renormalizable
with the associated rotation numbers of separating fixed points of the renormalizations obeying a cer-
tain inequality in an upper limit.

2008 [Kahn and Lyubich, 2008]
Kahn and Lyubich extend their work to give MLC at all parameters whose quadratics are infinitely
ql-renormalizable of primitive type and satisfy the molecule condition, which means the combinatorics
of the primitive renormalization operators involved stays away from the molecule, which is the part
of M comprising of the least full superset of the closure of the main cardioid and all hyperbolic
components that can be reached from it via bifurcation points. The molecule condition means that all
renormalizations stay uniformly away from the satellite type.

2011 [Levin, 2011]
Levin extends his work, relaxing the conditions of [Levin, 2007] to give a larger class of parameters for
which MLC holds.

2015 [Cheraghi and Shishikura, 2015]
Cheraghi and Shishikura use the Almost Parabolic Renormalization of Inou and Shishikura
[Inou and Shishikura, 2008] to prove MLC for parameters whose quadratics are infinitely ql-renormalizable
of unbounded satellite type, given certain growth conditions on the combinatorics.

2019 [Dudko and Lyubich, 2019]
Using Pacman Renormalization, Dudko and Lyubich publish the latest breakthrough in the conjec-
ture and show that M is locally connected at certain parameters whose quadratics are infinitely
ql-renormalizable of bounded satellite type. This is the first example of local connectivity at such
parameters.

4.2 Quadratic-like Renormalization

The above timeline gives a strong indication of the relevance of renormalization to the MLC conjecture.
This link was first established by Yoccoz, who proved local connectivity of M for all points other than
the infinitely ql-renormalizable ones. We will outline this result, but first it is of course necessary to
investigate the quadratic-like renormalization of Douady and Hubbard. This itself depends on maps
between simply connected domains. Thus, we feel the need to develop a more rigorous footing here
than that provided in Definition 2.19. This brings us back to a discussion of conformal mappings,
which is probably also in need of a slightly more rigorous treatment than the loose definition given
earlier, especially given the importance of Theorem 3.15.

Conformal mappings

Recall from Definition 3.14 that a conformal mapping is a mapping between two subsets D,E of the
complex plane that preserves angles, and a conformal isomorphism is a conformal mapping that is also
a bijection. We have as yet avoided laying this concept out in a rigorous way, since there is a neater,
equivalent way of thinking about conformal mappings.

Before getting into this section, we warn the reader that various authors define conformal mappings
in different, and not equivalent, ways. We avoid the gory details, and will use the below result as our
standard of a conformal mapping, while keeping in mind the angle-preserving nature of these maps.

Theorem 4.1 (Conformal Mapping Theorem) Let A,B ⊆ C be open. Then f : A → B is a
conformal mapping if and only if f is holomorphic with f ′(z) 6= 0 for all z ∈ A.

To add to the confusion, we have an alternative characterisation of conformal isomorphisms. Note the
below results very much depend on our choice of definition for a conformal mapping. We include these
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results here in an attempt to avoid ambiguity for the keen reader who intends to read this subject
more widely. We like this reader!

Definition 4.2 Let A,B ⊆ C be open. Then f : A → B is biholomorphic if it is a bijection, with
both f and f−1 being holomorphic.

Note that f is biholomorphic if and only if f−1 is biholomorphic.

With our definitions, the Inverse Function Theorem for Holomorphic Maps states that conformal
isomorphisms are biholomorphic. Further, since it may be shown that injective complex maps defined
on open subsets of C must have everywhere non-zero derivative, the converse also holds.

Proposition 4.3 Let A,B ⊆ C be open. Then f : A → B is biholomorphic if and only if it is a
conformal isomorphism.

So, to summarise, there is no standard definition of conformal mappings on which all sources agree,
and we will take conformal mappings to be the holomorphic maps with non-zero derivative. If we then
define a conformal isomorphism to be a bijective conformal mapping, then conformal isomorphisms
and biholomorphisms are exactly the same thing.

Conformal isomorphisms give a classification of subsets of the complex plane.

Definition 4.4 If there is a conformal isomorphism f : A → B, we say A and B are conformally
equivalent.

Proposition 4.5 Conformal equivalence is an equivalence relation.

Proof. Let A,B,C ⊆ C be open subsets.

Reflexivity : The identity map A → A given by z 7→ z is clearly bijective, and holomorphic with non-
zero derivative. Hence by Theorem 4.1, it is a conformal isomorphism.

Symmetry : Suppose there is a conformal isomorphism f : A → B. By Proposition 4.3, f is biholo-
morphic. Thus by the definition of a biholomorphic map, f−1 : B → A is also biholomorphic, and so
again by Proposition 4.3, this is a conformal isomorphism B → A.

Transitivity : Suppose there are conformal isomorphisms f : A → B and g : B → C. Compositions of
bijective holomorphisms are themselves bijective holomorphisms, so that g · f : A → C is a bijective
holomorphism. By the chain rule, (g ◦ f)′ (z) = g′ (f (z)) · f ′(z). Since f ′ and g′ are always non-zero,
we see that (g ◦ f)′ is also. Thus, (g ◦ f) is a conformal isomorphism A→ C.

For many purposes, we will think of conformally equivalent subsets of the plane as ‘being the same’ as
each other. It is a stronger form of equivalence than homeomorphicity. We will be especially interested
in those subsets of C which are conformally equivalent to B(0, 1), which brings us to the most important
theorem of this subsection.

Theorem 4.6 (Riemann Mapping Theorem) Let U ⊂ C be open and simply connected. Then U
is conformally equivalent to the open unit disc B(0, 1).

Note that we require U to be a strict subset of the plane: Liouville’s Theorem may be used to show
that C and B(0, 1) are not conformally equivalent.8 It follows from Theorem 4.6 that all strict subsets
of C which are open and simply connected are conformally equivalent.

The below corollary will be how we deal with simple connectivity, in place of the imprecise definition
we gave back in Section 2.3.

Corollary 4.7 Let U ⊆ C be open. Then U is simply connected if and only if U = C or U is
conformally equivalent to B(0, 1).

8It so happens that this already brings us very close to a complete classification of simply connected ‘Riemann
surfaces’, up to conformal equivalence. For more on this, see the Uniformization Theorem (Theorem 1.1 of [Milnor, 1990]).
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Proof. (⇒) Restatement of Theorem 4.6.
(⇐) C and B(0, 1) may both be seen to be simply connected. Then, suppose then U is conformally
equivalent to B(0, 1) via, say φ : B(0, 1) → U . Since φ is a homeomorphism, and since it may be
shown that simple connectivity is a topological property (i.e. invariant under homeomorphisms), U
must also be simply connected.

In particular, when we talk about open subsets of C which are conformally equivalent to B(0, 1), as
we frequently will, we are talking precisely about those open proper subsets of C which are simply
connected.

Quadratic-like renormalization: the self-similarity, and universality, of M

To overcome the final barrier to our locally-connected endeavours, we introduce the idea of quadratic-
like mappings. This will equip us with the power of quadratic-like renormalization, which can be used
to explain the presence of small, approximate copies of the Mandelbrot set within itself. In the course
of our discussion, we will touch on the universality of the Mandelbrot set - this is one of the biggest
reasons for the enduring mathematical importance of M , and therefore lends importance to the MLC
conjecture.

Renormalization is a sort of catch-all term for a very general process, of which there is a large variety
of specific forms. The general idea is that dynamical systems often exhibit a repetition of form within
themselves. For example, say we are investigating the dynamics of some f : X → X on some space
X. There may be some small part of the space U ⊂ X which iterates of f return to periodically, say
f◦k(U) = U . Then defining g = f◦k|U , we have dynamics of g, in a sense within f ’s dynamics and on
a smaller scale. In general, the dynamics of such a g will differ from the dynamics of f (though not
always– see Example 4.16). However, if f originated from some family of functions, it might be that g
has dynamics resembling those of another member of the family. The ‘renormalization step’ is to find
such a map in the family. Renormalization is the process of going from a map, to some scaled down
dynamics within, and then scaling back up by passing to the map found in the renormalization step.

We should note quickly that there are many different renormalizations defined for families of holo-
morphic functions, and even just in the world of the MLC conjecture (see various results in Section 4.1).
Thus, unless it is otherwise stated, the reader should assume any use of the word renormalization refers
to the quadratic-like renormalization.

The quadratic-like renormalization process for complex quadratic maps is as follows. We start with
some fc ∈ F , which has to have one of its iterates satisfy certain properties when restricted to an
appropriate subset of C. This restricted function will then have some of the properties of a com-
plex quadratic map (‘quadratic-like’), and the renormalization step is to apply the Douady-Hubbard
Straightening Theorem which says there is another fc′ ∈ F which shares the dynamics of the restricted
function.

Although we are defining quadratic-like mappings because of its links via quadratic-like renormaliz-
ation to results relating to the MLC conjecture, their most well-known application is to explain the
phenomenon of approximate copies of the Mandelbrot set appearing in parameter spaces for other func-
tion spaces, as well as in itself (Figure 3). This was Douady and Hubbard’s motivation for introducing
quadratic-like mappings in [Douady and Hubbard, 1985b]. This will be briefly visited en route.

For our discussion, we will require the following technical notion.

Definition 4.8 Let A,B ⊆ C, and let f : A → B. Then f is proper if, for each compact subset
K ⊆ B, we have that the pre-image f−1(K) is compact in A.

It will be crucial to us that all (non-trivial) iterates of complex quadratics are proper:
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Proposition 4.9 Let A,B ⊆ C. Suppose f : A → B is a non-constant polynomial, say f(z) =∑n
k=0 akz

k with n ≥ 1 and a0, . . . , an ∈ C. Then f is a proper map. In particular, any restriction of
f◦kc is a proper map for all c ∈ C, k ≥ 1.

Proof. We begin by noting that f is indeed holomorphic. Let K ⊆ B be compact. Then as a compact
subset of the complex plane, K is closed and bounded. Consider f−1(K). Since f is a polynomial, it is
holomorphic and in particular continuous. Therefore, f is a closed map, so that f−1(K) is closed. Next,
we have K ⊆ B(0, r) ∩ A for some r > 0, since K is bounded. Therefore, f−1(K) ⊆ f−1(B(0, r)).
If A is bounded, then so too is f−1(K) ⊆ A. If A is unbounded, suppose for a contradiction that
f−1(K) is unbounded. Then we may choose points in f−1(K) with arbitrarily large absolute value.
Since |f(z)| → ∞ as |z| → ∞, we may choose some z ∈ f−1(K) such that |f(z)| > r. But then
z 6∈ f−1(B(0, r)), contradicting f−1(K) ⊆ f−1(B(0, r)). We conclude that f−1(K) is closed and
bounded, so that it is compact, and therefore f is a proper map.

Examples of non-proper maps include the constant functions z 7→ z0 for z0 ∈ C (since the pre-image of
the compact set {z0} is the unbounded set C) and the trigonometric function sin : C → C (since the
pre-image of the compact set {0} is the unbounded set {nπ : n ∈ Z}). In fact, it may be shown that
the non-constant polynomials are the only holomorphic proper maps C→ C.

The importance of proper maps to us, is the idea of its degree. For a proper map f : U → V , every
point in V that is not a critical value of f has the same number of pre-images. This fixed number of
pre-images is the degree. We will not get into this any more deeply, let alone prove this property of
proper maps. Instead, we will define quadratic-like maps with the idea of multiplicity of pre-images of
polynomials, which loses some generality but suffices for investigating quadratic-like renormalization.
The key takeaway is that, if we can show a holomorphic map to be proper, and that a non-critical
value has 2 pre-images, then the below definition is satisfied.

Definition 4.10 Let U, V be open subsets of C that are conformally equivalent to B(0, 1), which are
such that U ⊂ V . A quadratic-like mapping is a holomorphic proper map f : U → V such that every
point in V has exactly two pre-images in U (counted with multiplicity).

Recall that the multiplicity of a root α of a polynomial P (z) over C is given as the highest power of
(z−α) that divides P (z). There is a general way to define the multiplicity of a pre-image of a complex
map, however the only quadratic-like maps we will only ever be dealing with are (suitable restrictions
of) iterates of quadratics - that is, polynomials of degree 2k for some k ∈ N - and so we may define
the multiplicity of a pre-image in the following simpler way: for a polynomial f : U → V , suppose
u ∈ U is a pre-image of v ∈ V , so that f(u) = v. Then the multiplicity of u as a pre-image of v is
the multiplicity of u as a root of the polynomial f(z)− v. Counting multiplicities of pre-images in this
way, our definition of quadratic-like maps coincides with requiring f be a holomorphic proper map of
degree 2. As a final note on the definition, note that a quadratic-like map f is necessarily surjective.

We are very keen on looking at some examples of quadratic-like maps, as it feels like a lot to take
in. We choose to do this after stating Theorem 4.12, as this theorem gives such a huge insight into
such examples. One example for which that theorem gives no new information is that quadratic maps
themselves are quadratic-like, so we look at this example now.

Example 4.11 The ‘two pre-images’ property of quadratic-like maps is satisfied by quadratic maps,
given we define the quadratic on the right domain. Accordingly, suitable restrictions of quadratic
maps are quadratic-like. Let fc ∈ F , and define U to be the unique open set whose boundary is the
equipotential Γc(r) for some r > 1 and which contains J(c). Similarly, take V to be the unique open
set whose boundary is the equipotential Γc(r

2) and which contains J(c), and consider the restricted
map fc|U : U → V . We claim this is a quadratic-like map. By Proposition 3.25, it does indeed map
into V , and it may be shown these sets are conformally equivalent to B(0, 1), and that U ⊂ V . By
Proposition 4.9, it is holomorphic and proper. Let z ∈ K(c)\{c}. Then since fc is a quadratic, z has
two pre-images which by Proposition 2.10 are in K(c) ⊆ U . Thus, fc|U is a quadratic-like map.
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Figure 17: Consider the Julia set J(ω), as in Example 2.2 and Figure 4). It is pictured, along with
two curves. The inner curve is the equipotential Γω(1.2), and the outer curve is its image

fω (Γω(1.2)) = Γω(1.44). Taking U as the interior of the region bounded by Γω(1.2), and V as the
interior of the region bounded by Γω(1.44), the map fω|U : U → V is a quadratic-like map.

Just as with quadratic maps, we may investigate the dynamics of quadratic-like maps. Many of the
definitions and theorems for the dynamics of quadratic maps carry across to the more general class of
quadratic-like maps, often with effectively identical proofs. In particular, we may define the filled-in
Julia set of a quadratic-like map f : U → V as

K(f) = {z ∈ U : f◦k(z) ∈ U for all k ∈ N}

and the Julia set of f as
J(f) = ∂K(f).

Note the subtle change in both definition, and notation. Previously, the filled-in Julia set consisted
of all points which don’t go off to infinity, whereas now we require they remain strictly in U , since
otherwise our map f is not defined. Also, since quadratic-like maps have a far more general form than
quadratic maps, there is no one-variable parametrisation, so the notation K(f) specifies the actual
name of the quadratic-like map rather than the K(c) we have been using for fc ∈ F .

Those quadratic-like mappings with connected Julia set will be of particular interest. Just as in the
quadratic case, the Julia set of a quadratic-like map is connected if and only if every critical point of
the map belongs to its filled-in Julia set.

We now introduce the most important theorem regarding quadratic-like mappings, the so-called Straight-
ening Theorem of Douady and Hubbard. It is essential to the process of quadratic-like renormalization,
and also explains why the above definitions and results for quadratic-like maps are so in parallel with
those for quadratic maps.

Theorem 4.12 (Straightening Theorem for Quadratic-like Mappings) Let U, V be open subsets
of C that are conformally equivalent to B(0, 1), and which satisfy U ⊂ V , and let f : U → V be a
quadratic-like mapping. Then f is hybrid equivalent to some quadratic map. Moreover, if J(f) is
connected, then this quadratic map is unique up to affine conjugation. In particular, in the connected
case, f is hybrid equivalent to a unique fc ∈ F .

Hybrid equivalence is a stronger form of topological conjugacy. In particular, if f and g are hybrid
equivalent, then there is a homeomorphism φ : A → B, where A and B are neighbourhoods of K(f)
and K(g) respectively, such that φ ◦ f = g ◦ φ, and φ is quasi-conformal (doesn’t distort angles too
much) with the Wirtinger derivative 1

2

(
∂φ
∂x + i∂φ∂y

)
evaluating to 0 throughout K(f). We avoid the
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details - the crucial point is that hybrid equivalent maps are topologically conjugate. As a result, they
have essentially identical dynamics, and homeomorphic Julia sets.

The following example is illustrative of the self-referential nature of M , and the power of the Straight-
ening Theorem in explaining this phenomenon.

Example 4.13 Let c ≈ −1.7577 + 0.0134i, so that f◦9c (0) = 0. Certainly c ∈M .

Figure 18: Left: We zoom in on a homeomorphic copy of the Mandelbrot set within itself. The
approximate location of the parameter c for this example is shown as a red dot.

Right: The entirety of the Mandelbrot set. The ‘mini Mandelbrot’ shown on the left is just about
visible within the red box. The approximate location of the parameter ω is shown as a red dot.

The Julia set of c is particularly striking:

Figure 19: The Julia set J(c). It is seemingly made up of scaled-down Douady rabbits, joined by thin
filaments resembling those on the mini-Mandelbrot.

If we plot the critical orbit O(c, 0) on top of the Julia set, the intrigue only deepens...
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Figure 20: We sequentially show the first 4 points in the critical orbit of fc, on its Julia set. In this
way, we can see that f◦3c is the first ‘return’ map for the central mini-rabbit.

The orbit jumps between 3 particular ‘mini-rabbits’, and this pattern will hold for the entire orbit,
and for any starting point that is within one of the 3 rabbits. The central rabbit, where we start and
which contains the critical point 0, is of particular interest. It is contained within the open set

U = {z ∈ C : −0.3 < Re(z) < 0.3 and − 0.3 < Im(z) < 0.3}

If we consider f◦3c as a function, we will ‘skip over’ the other mini-rabbits in the dynamics, and jump
around this central rabbit, within U . Letting V = f◦3c (U) and f = f◦3c |U : U → V , we are led to
the conclusion that f is a quadratic-like map. We may solve the equation

(
f◦3c
)′

(z) = 0 numerically
to find that f◦3c has only one critical point in U , namely 0. Thus, 0 is the unique critical point of f .
Since f◦3(0) = f◦9c (0) = 0, we must have 0 ∈ K(f), so that J(f) is connected, and by Theorem 4.12,
f is hybrid equivalent to a unique fc ∈ F . In this case, f is hybrid equivalent to the Douady rabbit
quadratic fω. Thus, in this case, J(f) is a small homeomorphic copy of the Douady rabbit J(ω).

If we let c vary over the mini-Mandelbrot that we have been considering, we would be varying over a
collection of quadratic-like maps. Each one would be hybrid equivalent to a unique fc′ ∈ F . The map
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c 7→ c′ may be shown to be a homeomorphism, so that we are indeed dealing with a homeomorphic copy
of M . This process can be applied to any family of quadratic-like maps. This leads to homeomorphic
copies of M appearing all over the place in one-dimensional complex dynamics. This is the so-called
universality of the Mandelbrot set.

Definition 4.14 Let fc ∈ F . Then fc is renormalizable at level n if there exist open sets 0 ∈ U, V ⊂ C
that are conformally equivalent to B(0, 1), such that for some n ∈ N, we have a quadratic-like map
f◦nc : U → V which has a connected Julia set. The unique fc′ ∈ F which is hybrid equivalent to
the quadratic-like map f◦nc is a quadratic-like renormalization of fc. We denote this by Rn(fc) = fc′ ,
so that Rn is the quadratic-like level-n renormalization operator which maps level-n renormalizable
quadratics to their renormalization in F . If fc is renormalizable at level n for some n ∈ N, we say fc
is renormalizable. Otherwise, fc is not renormalizable.

Looking back at Example 4.13, with c as in that example, we showed that fc is renormalizable, with
renormalization R3(fc) = fω.

Suppose we take some renormalizable fc ∈ F to its renormalization Rn(fc). What if the renormaliza-
tion itself is again renormalizable? We are motivated to make a definition!

Definition 4.15 Let fc ∈ be renormalizable at level n. If Rn(fc) is renormalizable, with a renormaliz-
ation which is again renormalizable, and so on, then we say fc is k-times renormalizable, where k ∈ N
is the number of times we are able to repeat the renormalization process. If fc is k-times renormal-
izable for infinitely many k ∈ N, we say fc is infinitely renormalizable. Otherwise, fc is not infinitely
renormalizable. If fc is k-times renormalizable for some k ∈ N, but is not infinitely renormalizable,
then we say fc is strictly finitely renormalizable.

This definition of infinitely renormalizable is equivalent to the statement that fc ∈ F is renormalizable
at level n for infinitely many n ∈ N.

The mini-Mandelbrot considered in Example 4.13 has smaller Mandelbrot copies attached to it, each
of which has yet-smaller Mandelbrot copies, and so on. A parameter that was located in a hyperbolic
component of a ‘k-level’ mini-Mandelbrot would be k-times renormalizable, with each renormalization
pulling us out to the next biggest mini-Mandelbrot.

An infinitely renormalizable map has an infinity of layers to its dynamics. A parameter that was within
infinitely many mini-Mandelbrots would give an infinitely renormalizable map.

Example 4.16 Let cF = −1.4011551890 . . . be the so-called Feigenbaum parameter. The location of
the parameter is easily seen on a picture of M . Starting at 0 at the centre of the main cardioid, head
left along the real axis. The first ‘period doubling bifurcation parameter’ is c = −3

4 , and is where the
main cardioid meet the unique hyperbolic component of period 2. It is so-called because crossing it
takes us from quadratics with attracting cycles of period 1 to quadratics with attracting cycles of period
2. Continuing left along the real axis, we will cross the next period doubling bifurcation point when
we cross over to the next hyperbolic component, which is of period 4, and going on this way, we will
find infinitely many period doubling bifurcations in a compact interval. The Feigenbaum parameter
cF is defined as the smallest negative real number such that there are infinitely many period doubling
bifurcation points in [cF , 0]. It is the limit point of the set of period doubling bifurcation parameters.
Let cn be the nth period doubling bifurcation parameter. Then cn is the root of a hyperbolic component
Wn of period 2n, which is a perfect circle. The ratio diam Wk/diam Wk+1 of the diameters approaches
the famous Feigenbaum constant δ = 4.6692016 . . .

fcF may be shown to be renormalizable, with R2(fcF ) = fcF . That is, it renormalizes to itself.
Equivalently, we have that f◦(2

k)
cF is quadratic-like when restricted to a suitable domain, for every

k ∈ N. It follows that fcF is infinitely renormalizable.

It is known the Julia set J(cF ) is locally connected, but it is at this moment unknown whether M is
locally connected at cF (see [Hu and Jiang, 1993]).
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This map remains a subject of research - as recently as 2020, Artem Dudko and Scott Sutherland
published their result that the Hausdorff dimension of J(cF ) is less than 2. This had previously been
a long-standing open problem (see [Dudko and Sutherland, 2020]).

Figure 21: The circular hyperbolic components Wn of M , which are each the unique hyperbolic
component of period 2n that intersects the real line. Here we have drawn Wn for 1 ≤ n ≤ 9. The

ratios of the diameters is tending to the Feigenbaum constant δ. The left-most point of Wn tends to
the Feigenbaum parameter cF .

4.3 Yoccoz’ Theorem

Here, we outline the proofs as presented by Hubbard in [Hubbard, 1993] of J. C. Yoccoz’ breakthrough
results of 1989. By the end of the section, we will have local connectivity at all non-infinitely quadratic-
like renormalizable parameters.

Theorem 4.17 (Yoccoz’ Theorem) Suppose fc ∈ F is not infinitely renormalizable. Then M is
locally connected at c.

It is a long journey to get to this result. The path there is as follows: First, we show that M is locally
connected at all parameters whose quadratics possess an indifferent cycle. Then, we are free to focus
only on quadratics whose cycles are all repelling. If this is the case for some fc which is not infinitely
renormalizable, then the Julia set J(c) is locally connected. The final step is to transfer this result to
the parameter plane, giving that M is locally connected at the corresponding c.

The ‘indifferent parameters’

An indifferent parameter is a parameter c ∈ M such that fc possesses a cycle whose multiplier ρ
satisfies |ρ| = 1. In spite of the name, there are many interesting things to be said of these parameters.
For example, the following generalisation of Corollary 3.11. The idea behind the proof is to suppose
there are two non-repelling cycles, and show that we may perturb the parameter so that both become
attracting, contradicting Corollary 3.11.

Proposition 4.18 (Fatou-Shishikura Theorem for quadratic maps) Let fc ∈ F . Then fc has
at most one cycle which is not repelling.

Thus, for an indifferent parameter, we may talk of the indifferent cycle that belongs to it. Indifferent
parameters necessarily belong to the boundary of M . In fact, if fc has an indifferent cycle of length
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k, then c belongs to the boundary of a hyperbolic component W which consists of parameters with
attracting cycles of length k.

The situation is particularly clear when the cycle is rationally indifferent. In this case, we have exactly
two parameter rays landing at the indifferent parameter - with the exception of the ‘cusp’ parameter
c = 1

4 , which is the landing point of RM (0) only. Excluding this point from our considerations, we
are able to use this fact about rationally indifferent parameters to construct wakes and limbs of the
Mandelbrot set. These will be used to construct arbitrarily small connected neighbourhoods for (most)
indifferent parameters.

Definition 4.19 Suppose fc ∈ F has a rationally indifferent cycle with multiplier ρ = e2πip/q, with
0 < p < q co-prime. Let RM (t1) and RM (t2) be the two parameter rays landing at c. Consider the set

C \ (RM (t1) ∪RM (t2) ∪ {c})

constructed by taking the complex plane, and removing both the ray pair and their landing point. It
has two connected components. The wake of c is the connected component which does not contain 0.

Example 4.20 Consider the first period-doubling bifurcation parameter c = −3
4 . It is the unique point

in the intersection of the closures of the unique hyperbolic components of periods 1 and 2. As such, it
is an indifferent parameter. Its unique indifferent cycle is the fixed point z = −1

2 . The parameter is
the landing point of the two parameter rays RM (1/3) and RM (2/3). This is all shown in Figure 22,
where the resulting wake is the part of the plane on the left of the rays.

Figure 22: This image shows the Mandelbrot set along with the parameter rays RM (1/3) and
RM (2/3), which land at the indifferent parameter c = −3

4 . The ray pair cuts the parameter plane
into two connected components. The component not containing zero, that is the one disjoint from
the main cardioid, is the wake of c. This image has been modified from the form it takes in its

source, which is [Branner and Fagella, 2001] - there, it is Figure 1 on page 101.
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In case you didn’t quite get the idea from Example 4.20, let us take a brief look at roughly 1000 more
examples!

Figure 23: This image shows the Mandelbrot set along with all pairs of parameter rays which land at
a root of a hyperbolic component of period at most 10. The parameter rays are coloured accordingly.

In total, this gives 1966 rays. Each ray pair cuts the plane into two connected components. The
component not containing zero, that is the one disjoint from the main cardioid, is the wake of the

indifferent parameter at which the two rays land. This image was released into the public domain by
its creator, Wikipedia user BeagleTheBagel.

Wakes are a useful construction because they allow us to portion off parts of M . It is natural, then,
to define limbs.

Definition 4.21 Let c be a rationally indifferent parameter, and let W be the wake of c. Then the
limb with root c is the set

W ∩M

i.e. the part of M in the wake of c.

Fix H as any hyperbolic component of M . Recall that Theorem 3.15 gives us a parametrization γH
of the boundary of H, which sends e2πip/q to the unique parameter on the boundary of H with a
rationally indifferent cycle whose multiplier is e2πip/q. Each such parameter has its own limb. Thus,
there is a one-to-one correspondence between rational numbers in Q/Z, and limbs attached to H.

Specifically, for each hyperbolic component H of M , and for each p/q ∈ Q/Z, define L(H, p/q) to be
the unique limb of H whose root is the parameter γH(e2πip/q). We say L(H, p/q) is the p/q-limb of H.

Example 4.22 Recall that H0 denotes the unique hyperbolic component of M of period 1, and is the
interior of the main cardioid. Looking back at Figure 22, we see that L(H0, 1/2) is the limb with root
−3/4, since −3/4 = γH0(e2πi∗(1/2)).
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The motivation for linking rational numbers and limbs (given a fixed hyberbolic component) is that
they provide an upper bound on the diameter of a limb.

Proposition 4.23 (The Yoccoz Inequality) Let H be a hyperbolic component of M . Then there
exists a constant kH such that, for all p/q ∈ Q/Z except p/q = 0, we have

diam L(H, p/q) ≤ kH
q

Proof. See Proposition 4.2 of [Hubbard, 1993].

Keep in mind that for any p/q ∈ Q/Z, we are always taking p and q to be co-prime, else the above is
nonsense. The crucial result of the proposition is that the size of the limbs gets arbitrarily small as q
grows. We will use this to show local connectivity of M at all indifferent parameters, except for those
where the corresponding multiplier is precisely 1. This corresponds to the case p/q = 0, the so-called
primitive parabolic parameters.

We are, at last, able to establish MLC at more parameters. The below is an expansion of the proof in
[Hubbard, 1993]. We detail the constructions of the proof as best we can, and will go through some
examples and pictures of them too.

Theorem 4.24 Suppose fc ∈ F has an indifferent cycle. Then M is locally connected at c.

Proof. Let (z1, . . . , zm) be an indifferent cycle of fc, of period m. Let ρ be the multiplier of the cycle.
Then, since the cycle is indifferent, ρ = e2πit for some t ∈ R/Z. Let U ⊆ M be an arbitrary open set
containing c, and let ε > 0 be such that B(c, ε) ⊆ U . We split into three cases.

Case 1. Suppose t is irrational. Then c belongs to the boundary of a unique hyperbolic component
H, of period m. Let ρH be the conformal isomorphism H → B(0, 1), and ρH be the extension to the
boundary, given by Theorem 3.15. Let kH be the constant provided by Proposition 4.23.

For each δ > 0, let R(δ) = {r ∈ Q/Z : |t − r| < δ} be the set of rational numbers within δ of t. Let
Q(δ) = inf{q : p/q ∈ R(δ)}. Note that Q(δ)→∞ as δ → 0, since better rational approximations of t
will require larger denominators. Take δ1 > 0 such that Q(δ1) >

2kH
ε . Note that, by Proposition 4.23,

we have diam L(H, p/q) < ε/2 for all p/q ∈ R(δ1).

Next, for each δ > 0, define S(δ) to be the segment of D(0, 1) formed by drawing a line between
e2πi(t−δ) and e2πi(t+δ). Certainly, diam S(δ) → 0 as δ → 0. We translate this segment from the unit
ball to H using the map ρH . Note that c ∈ ρ−1

H
(S(δ)) for all δ > 0. Since ρH is a homeomorphism, we

will have diam ρ−1
H

(S(δ))→ 0 as δ → 0. Take δ2 > 0 such that diam ρ−1
H

(S(δ2)) < ε/2.

Let δ3 = min{δ1, δ2}. Form the set

N = ρ−1
H

(S(δ3)) ∪

 ⋃
p/q∈R(δ3)

L(H, p/q)


The root point of every limb inN is less than ε/2 away from c, since diam ρ−1

H
(S(δ3)) < ε/2. Also, every

point in a given limb of N is less than ε/2 away from the limb’s root point, since diam L(H, p/q) < ε/2
for all p/q ∈ R(δ3). Therefore, every point in N is less than ε away from c, so N ⊆ B(c, ε) ⊆ U .

Finally, it may be shown that every point in a small enough neighbourhood of c is either in H, or
in a limb attached to H at some rationally indifferent parameter.9 Since N consists of a) every limb
within a certain distance of c, and b) a neighbourhood of c as a subspace of H, we conclude that N is

9This is the so-called “no ghost limbs” theorem, see Section 4 of [Schleicher, 1999] for a proof and discussion of this
result.
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a neighbourhood of c in M . Finally it remains to show that N is connected. Certainly the limbs are
all connected to the H-neighbourhood of c, which itself is certainly connected. Finally, each individual
limb itself must be a connected subset of C, since otherwise M would not be connected. We conclude
M is locally connected at c.

Case 2. Suppose t = p/q ∈ Q/Z is non-zero. Then c belongs to the boundary of two hyperbolic
components. One of them, say H1, is of period m, and c = ρH1

(e2πit) (in the notation of Case 1).
The other one, say H2, is of period a multiple of m, and c = ρH2

(0) is the root of H2. That is, c has
internal angle t on the boundary of H1, and H2 is a smaller hyperbolic component than H1, attached
to H1 at c.

Precisely as above, we may construct a set N1 consisting of the ‘segment’ ρ−1
H1

(S(δ)) of H1 and all
the attached limbs, such that the diameter of the segment is less than ε/2, and the diameters of all
the limbs is less than ε/2. We do the same for H2, constructing N2 on the other side of c. Then
int(N1 ∪N2) is a connected open set contained in U , which contains c, so that M is locally connected
at c.

Case 3. The remaining case is ρ = 1, where c is a ‘primitive’ indifferent parameter. This is a special
case and requires a deeper theory to tackle. Hubbard outlines a proof using the theory of Mandelbrot-
like families in Theorem 14.6 of [Hubbard, 1993], and Tan Lei uses the techniques of parabolic implosion
to provide a proof in the paper [Lei, 2000].

We demonstrate the construction of an arbitrary connected open neighbourhood of one irrationally
indifferent parameter, and one (non-primitive) rationally indifferent parameter. The natural place to
look is on ∂H0, the boundary of the main cardioid, since this is algebraically easiest to work with.

In fact, we can obtain an explicit form for the paramaterization of ∂H0. Let c ∈ ∂H0. Then fc has
an indifferent fixed point z, so that z2 + c = z, and f ′(z) = 2z = e2πit, where t ∈ R/Z is the internal
angle of c on ∂H0. Eliminating z from this pair of equations yields

c = z − z2 =
1

2
e2πit − 1

4
e4πit = γH0(t)
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Figure 24: On the left, the Mandelbrot set is shown, with the approximate position of the irrationally
indifferent parameter c = γH0(

√
2/2) indicated by the red dot. On the right, we zoom in on a

neighbourhood of c. To construct a connected neighbourhood of c, we cut off a segment of the main
cardioid (which is the unique hyperbolic component whose boundary c belongs to), and take this
segment along with all of the limbs attached to the segment as the neighbourhood. Two such
neighbourhoods are circled in green. Note that by taking a smaller segment in the smaller

neighbourhood, we have a smaller largest limb. This construction generates arbitrarily small
connected neighbourhoods of c, since there are limbs attached at every rational number between the
internal angles of the outermost limbs of any given segment. Thus, smaller segments will have limbs
whose internal angles are finer and finer rational approximations for

√
2/2, so by Proposition 4.23,

such limbs get smaller and smaller.

Figure 25: A neighbourhood of the rationally indifferent parameter c = −3/4 = γH0(−1). This
parameter is the ‘first period doubling bifurcation point’ in M ’s period doubling cascade along the
real axis. It is the unique parameter in the intersection of the boundaries of H0 (the main cardioid)
and H1 (the unique hyperbolic component of period 2). To construct a connected neighbourhood of
c, we cut off segments of both hyperbolic components, and take the union of both segments together
with all the limbs that are attached to them both. The internal angles of the limbs of H0 in smaller
and smaller neighbourhoods of c are better and better ‘rational approximations of -1’, e.g. 0.9, 0.99,

0.999, . . . The internal angles of the limbs of H1 in smaller and smaller neighbourhoods of c are
approximating 0, e.g. 0.1, 0.01, 0.001, . . . By Proposition 4.23, the diameters of these limbs shrink as
we take smaller segments, so that we can construct arbitrarily smaller connected neighbourhoods of c.
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Yoccoz puzzles

Throughout this section, we need only concern ourselves with those fc ∈ F which have all repelling
cycles. For, if there is an attracting cycle, then M is locally connected at c by Theorem 3.13, and if
there is an indifferent cycle, then M is locally connected at c by Theorem 4.24. To this end, define F̃
to be the subset of F consisting of those quadratics whose cycles are all repelling.

The approach of Yoccoz was to start in the dynamical plane, showing that when such a quadratic
is not infinitely renormalizable, the Julia set is locally connected. We are actually able to explicitly
construct arbitrarily small connected neighbourhoods at each point. The construction is known as the
Yoccoz puzzle.

Now, since we are excluding hyperbolic and indifferent parameters from our considerations, we have no
interest in the main cardioid H0, which is disjoint from F̃ . As such, we look only at points that are in
some limb L(H0, p/q) attached to the main cardioid at internal angle p/q. Suppose c ∈ F̃ ∩L(H0, p/q).
Then fc, as a quadratic, has two fixed points, which must both be repelling. One of the fixed points,
traditionally denoted β, is the landing point of the ray Rc(0) of external angle 0. Meanwhile, α is
used to denote the other fixed point. α is characterised as the least repelling fixed point of fc.10 Since
c ∈ L(H0, p/q), it must be the case that there are precisely q dynamical rays landing at α - this fact
will be crucial in the construction of the Yoccoz puzzle. Label these rays R1, . . . , Rq.

The idea of the puzzle is to break the Julia set up into compact ‘pieces’ cut out by the rays, that
join together like a jigsaw puzzle, and whose pre-images under fc cover the Julia set by smaller and
smaller connected sets. The ‘puzzle pieces’ are defined inductively, and so we must start with some
open region that bounds the Julia set. Naturally, we look to the Green’s function for this purpose.
Take r > 1, and define

U0 = {z ∈ C : Gc(z) < r}

so that U0 is the interior of the region bounded by the equipotential Γc(log r). By definition of the
Green’s function of K(c), we have K(c) ⊂ U0. Note our choice of r > 1 makes no difference thus far,
and indeed won’t down the line either, since we will be shrinking U0 to arbitrarily small regions. Next,
define

R0 =

q⋃
i=1

(Ri ∩ U0)

as the set of all points which are in both one of the q rays landing at α, and within U0. We can now
inductively define the puzzle of a quadratic.

Definition 4.25 Let fc ∈ F̃ . The puzzle Pc of fc is a pair of sequences

Pc = (U ,R)

where U = (U0,U1, . . .) and R = (R0,R1, . . .) are defined inductively by Un = f−1c (Un−1) and Rn =
f−1c (Rn−1).

That is, we look in on a part of the plane bounded by some equipotential, and take the parts of the q
rays landing at α that are inside that part of the plane, and then the puzzle is formed as the sequences
of pre-images of both the part of the plane, and the parts of the rays. Note that we necessarily have
U0 ⊃ U1 ⊃ . . ., and note also that at any point in the sequences, the rays in Ri cut Ui into open
regions. This leads to our next definition.

Definition 4.26 Let fc ∈ F̃ have puzzle Pc. For each n ∈ N, the puzzle pieces of Pc at depth n are
the elements of the set

Pc (n) = {X : X is a connected component of Un\Rn in Un}
10In fact, these observations hold for any fc ∈ F , except the special case c = 1/4 where α = β.
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So, a puzzle piece is the closure of one of these q regions cut out from a connected component of some
Un. Together, the puzzle pieces at a given depth n tile the set Un, i.e. they partition this set, with the
only overlap being their boundaries. The regions Un are cut out into pieces of a jigsaw puzzle by the
pre-images of the dynamical rays landing at α. Since each Un is contained in Un−1, we must have that
every puzzle piece at depth n is contained in some puzzle piece at depth n− 1.

The puzzle pieces are a sort of Markov partition for the dynamics of a quadratic - distinct puzzle pieces
at the same depth have disjoint interiors, puzzle pieces of larger depth are contained in puzzle pieces
of smaller depth, and fc maps a puzzle piece at depth n to a puzzle piece at depth n− 1.

By definition of the dynamical rays R1, . . . , Rq landing at α, the only point of intersection of the
rays and K(c) is α, so that R0 ∩ K(c) = {α}. Then since K(c) is completely invariant under fc
(Proposition 2.10), the boundary of a puzzle piece will intersect K(c) at some collection of pre-images
of α. In fact, if α 6∈ O(c, 0), then each pre-image of α is in exactly q puzzle pieces at all sufficiently
large depths (more precisely, on the boundary of q puzzle pieces).

We get an edge case out of the way now, when α ∈ O(c, 0), because we want to assume this previous
observation will hold. Thankfully, this case was dealt with in [Douady and Hubbard, 1985a]. Recall
that our current goal is to use puzzles to show local connectivity of Julia sets.

Proposition 4.27 Let fc ∈ F̃ , and suppose α ∈ O(c, 0). Then J(c) is locally connected.

Since we want to use the puzzle pieces as arbitrarily small connected neighbourhoods, we want to show
that they get arbitrarily small. Accordingly, we introduce ends.

Definition 4.28 Let fc ∈ F̃ have puzzle Pc. An end E of Pc is a nested sequence of puzzle pieces.
That is, an end is any sequence of puzzle pieces E = (X0, X1, . . .) such that X0 ⊃ X1 ⊃ . . .

The set of all ends of Pc is denoted Ec.

When we come to constructing a basis of connected neighbourhoods using puzzle pieces, we will
essentially be dealing with some particular end. Thus we now want to find a way to show all ends get
arbitrarily small.

Definition 4.29 The impression of an end E = (X0, X1, . . .) is the set

J (E) =
∞⋂
n=0

Xn

It may be shown that for any end E , the impression J (E) is a compact, connected subset of C. The
impression can show us that an end gets arbitrarily small in the following way.

Definition 4.30 Let E be an end. Then we will say E shrinks to a point if the impression J (E)
consists of a single point.

If an end E = (X0, X1, . . .) shrinks to a point, then the diameters of the sets Xn must necessarily
tend to 0. Since it may also be shown that the intersection of any puzzle piece with the Julia set is
connected, we can get a result on local connectivity.

Theorem 4.31 Let fc ∈ F̃ , and suppose that every end E ∈ Ec shrinks to a point. Then J(c) is locally
connected.

Proof. If the fixed point α ∈ O(c, 0), we get the result from Proposition 4.27. Otherwise, all pre-images
of α belong to q puzzle pieces at sufficiently large depths. Let z ∈ J(c). Then there necessarily exists
an end E = (X0, X1, . . .) such that z ∈ Xn for all n ∈ N. Now, either z is a pre-image of α, or it
isn’t. If it is not, then z cannot be on the boundary of any of the puzzle pieces Xn, so instead is in the
interior of each. In this case, the sets Xn ∩ J(c) are connected neighbourhoods of z whose diameters
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approach 0, so that there are arbitrarily small connected neighbourhoods of z in J(c), and J(c) is
locally connected at z. Finally, if z is a pre-image of α, then at sufficiently large depths, z is on the
boundary of q puzzle pieces. Let Yn be the union of the q puzzle pieces at depth n which contain z,
where n is sufficiently large. Each puzzle piece in Yn is in some end, which shrinks to a point, so that
the diameters of each puzzle piece in Yn tends to 0 as n→∞. Therefore, the diameter of Yn tends to
0 also. Thus, just as before, the sets Yn ∩ J(c) are arbitrarily small connected neighbourhoods of z in
J(c), and J(c) is again locally connected at z.

It would remain to show that all ends of non-infinitely renormalizable quadratics (with all cycles
repelling) must shrink to points. This involves diverging sums of moduli of annuli (see Section 4.4) of
nested puzzle pieces, and tableaux of ends, and other technical machinery. After that, it remains still to
transfer the results to the parameter plane. This is done with an analogous construction called the para-
puzzle, which provides a basis of connected neighbourhoods in M for all parameters c whose quadratic
is not infinitely renormalizable. The arbitrarily small shrinking of the para-puzzles is demonstrated
using the similarity of J(c) and M near c. All of these details may be found in [Hubbard, 1993]. After
all this, we are able to deduce Theorem 4.17.

Example 4.32 As a demonstration of the Yoccoz puzzle, we look at the puzzle Pω for the Douady
Rabbit quadratic fω. We choose our initial region U0 for the puzzle to be the interior of the region
bounded by Γω(1.2). The α fixed point lies at z = 1−

√
1−4ω
2 ≈ −0.276 + 0.48i, and has 3 dynamical

rays landing at it. The puzzle pieces at depth 0 can then be formed.

Figure 26: The puzzle pieces at depth 0 of Pω are the 3 closed regions cut out by the 3 dynamical
rays landing at α, and bounded by the equipotential Γω(1.2).

The pre-image of U0 is the interior of the region bounded by the equipotential Γω(
√

1.2). This is our
U1. There are 6 ‘pre-images rays’, 3 of which are the rays landing at α, and the other 3 land at −α.
The puzzle pieces at depth 1 can then be formed.
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Figure 27: The puzzle pieces at depth 1 of Pω are the 5 closed regions cut out by the 6 pre-images of
the 3 dynamical rays landing at α, and bounded by the equipotential Γω(

√
1.2) = f−1ω (Γω(1.2)).

As an alternative example to see how the same ideas can be applied to any Julia set, we present the
following illustration which is Figure 8.3 on page 133 of [McMullen, 1994a].

Figure 28: The puzzle pieces at depth 0, 1, 2, 3 and 4 of Pi are all shown together. That is, the
puzzle pieces for fi : z 7→ z2 + i.

In both of these examples, we may continue to go to deeper depths of the puzzle. The puzzle pieces
at each depth will always tile the filled-in Julia set, and in the cases where all cycles are repelling and
the map is not infinitely renormalizable, all ends of the puzzle will shrink to points, so that the puzzle
pieces will get arbitrarily small at arbitrarily large depths. We will have each point in J(c) either being
a pre-image of the α fixed point and thus on the shared boundary of q pieces (where q is the number
of rays landing at α), or otherwise being in the interior of puzzle pieces at all depths. We can see the
phenomena clearly in the above 2 examples (which both have q = 3).
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4.4 The a priori bounds, and quadratics that are infinitely renormalizable of
bounded type

We are going to look briefly at one other published result that made progress towards the full MLC
conjecture. Specifically, we look at [Kahn, 2006] and define the class of parameters for which local
connectivity was shown in that work. We also define a property that infinitely renormalizable maps
can possess, the so-called a priori bounds, which implies local connectivity of M at the correspond-
ing parameter. It is through a priori bounds that local connectivity of M has often been demon-
strated, with almost every entry in the above timeline utilising them. Notably the most recent result
[Dudko and Lyubich, 2019] is somewhat of an exception - in that work, the class of parameters for
which MLC is proven consists of some that have a priori bounds, and some that don’t.

First we must discuss annuli in the complex plane.

Definition 4.33 Let a ∈ C, 0 < r < R. Then, the annulus with centre a, inner radius r, and outer
radius R is the set

A(a, r,R) = {z ∈ C : r < |z − a| < R}

Figure 29: The annulus A(a, r,R).

It is easy to conformally map an annulus to an annulus of the standardised form A(0, 1, R) for some
R > 1. Annuli are very regular subsets of the complex plane, and for our applications, it is far
more typical that we will be dealing with ‘annuli-like’ subsets of the plane. We have already defined
the machinery required for this: conformal equivalence. In fact, we need only that a given subset is
homeomorphic to an annulus to get conformal equivalence.

Proposition 4.34 Let U be an open subset of C, and suppose U is homeomorphic to some annulus.
Then U is conformally equivalent to A(0, 1, R) for some unique R > 1.

The uniqueness allows for the following definition, which provides a notion of size for these annuli-like
subsets.

Definition 4.35 Let U be an open subset of C that is conformally equivalent to A(0, 1, R) for some
R > 0. Then the modulus of U is

mod(U) =
logR

2π

There is a wide variety of places in complex dynamics, and in fact generally in complex analysis,
in which we meet subsets that are conformally equivalent to annuli. In fact, anywhere where we
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meet nested subsets that are each conformally equivalent to B(0, 1), which as discussed previously,
just means nested subsets of the complex plane that are simply connected. Then, the set-theoretic
difference of successive nested such subsets will be conformally equivalent to annuli.

One such situation is the nested puzzle pieces discussed in Section 4.3, and indeed the shrinking of
puzzle pieces was demonstrated by Yoccoz using the modulus of the sets formed by the set-theoretic
difference of successive nested puzzle pieces. Though we don’t look at this in any detail, it does serve
as a motivating example, as we will discuss in a moment.

There is another situation in which we have already met nested subsets that are conformally equivalent
to B(0, 1):

Proposition 4.36 Let U, V be open subsets of C that are conformally equivalent to B(0, 1), and
which satisfy U ⊂ V . Then V \U is homeomorphic to an annulus, and thus conformally equivalent
to A(0, 1, R) for some R > 0. In particular, if f : U → V is a quadratic-like mapping, then V \U is
conformally equivalent to A(0, 1, R) for some R > 0.

Suppose fc ∈ F is infinitely renormalizable. Then there is a monotone strictly increasing sequence
(p0, p1, p2, . . .) of integers such that fc is renormalizable at level pk for each k ∈ N, and thus a sequence
of quadratic-like mappings

f◦(pk)c : Uk → Vk

In fact, there are various such sequences of integers. We will call any such sequence an infinite sequence
of renormalization periods. We are now able to define a priori bounds.

Definition 4.37 Let fc ∈ F be infinitely renormalizable. Then fc is said to have/enjoy a priori
bounds if there exists an infinite sequence of renormalization periods (p0, p1, p2, . . .), and an associated
sequence of quadratic like mappings

f◦(pk)c : Uk → Vk

such that
mod(Vk\Uk) ≥ ε

for each k ∈ N, and for some universal lower bound ε > 0.

In [Lyubich, 1997], Mikhail Lyubich describes a priori bounds as “a basic geometric quality of infin-
itely renormalizable maps” and “a key to the renormalization theory, problems of rigidity and local
connectivity”. They were first introduced by Dennis Sullivan in the work [Sullivan, 1988].

As we mentioned above, a motivating example for the definition of a priori bounds is nested sequences
of puzzle pieces, which give rise to an infinite sequence of smaller and smaller annuli-like subsets. In
particular, it is crucial to the proof of Theorem 4.17 to show that the infinite sum of the moduli of each
annuli-like subset is infinite, and this is something of a theme in results relating to the MLC conjecture.
It is clear that the infinite sum of moduli of the annuli-like subsets formed in Definition 4.37 will be
infinite when there is a priori bounds. This has the following far-reaching consequence, which gives a
priori bounds their importance.

Theorem 4.38 Let fc ∈ F be infinitely renormalizable, and suppose fc has a priori bounds. Then
J(c) is locally connected, and M is locally connected at c.

Our final act of this section is to define the quadratics that are infinitely primitively renormalizable of
bounded type - for whom a priori bounds was proven by Jeremy Kahn in [Kahn, 2006]. This requires
two new definitions.

Definition 4.39 Suppose fc ∈ F is renormalizable, with f = f◦nc |U : U → V being the quadratic-like
mapping used in some renormalization. Let K(f) be the quadratic-like map’s Julia set. Then, the
renormalization is primitive if the elements of {f◦kc (K(f)) : k = 0, 1, . . . , n−1} are pairwise disjoint. An
infinitely renormalizable map is infinitely primitively renormalizable if it has infinitely many primitive
renormalizations.
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Example 4.40 In Example 4.13, we looked at the renormalizable map fc, with c ≈ −1.7577+0.0134i.
In fact, the renormalization in that instance was primitive, since as discussed in that example, the
orbit jumped between 3 ‘mini-Rabbits’, as shown in Figure 20. The collection of these 3 mini-rabbits
is precisely the collection whose pairwise empty intersection makes the renormalization a primitive one.

Example 4.41 In Example 4.16, we looked at the renormalizable Feigenbaum map fcF , with cF =
−1.4011551890. In this case, letting f be the quadratic-like map used in the renormalization, we have
the collection {K(f), fcF (K(f))} that will tell us whether or not the renormalization is primitive. In
fact, these two sets are not disjoint, and they touch at a single common point touch at a single common
point, so that the renormalization is not primitive. Whenever primitiveness fails for some f◦nc : U → V
because of this non-empty intersection, the intersection will always consist of a single point, which will
be a repelling fixed point of f◦nc .

Figure 30: The top image shows the Julia set J(cF ). The bottom image shows K(f) circled in blue,
and fcF (K(f)) circled in red. The pair touch at a single point, which is a repelling fixed point of f◦2cF .

This image is taken from [McMullen, 1994a], where it is Figure 7.5 on page 114.

Definition 4.42 Let fc ∈ F . Then fc is infinitely primitively renormalizable of bounded type if
there exists an infinite sequence of renormalization periods (p0, p1, p2, . . .) such that fc is primitively
renormalizable at level pk for each k ∈ N, and

pk+1/pk ≤ B

for each k ∈ N, and for some universal upper bound B > 0.

At last, we are able to state the result of [Kahn, 2006].

Theorem 4.43 Suppose fc ∈ F is infinitely primitively renormalizable of bounded type. Then fc has
a priori bounds.

Corollary 4.44 Suppose fc ∈ F is infinitely primitively renormalizable of bounded type. Then J(c) is
locally connected, and M is locally connected at c.
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5 The Pinched Disc Model of the Mandelbrot Set

An author of a project on the MLC conjecture is spoiled for choice when it comes to writing about the
consequences of the conjecture. The difficulty comes in finding a way to explain any such consequence
in a vaguely intelligible way, given that we hope for a highly-attuned undergraduate student being able
to understand what we present. If MLC were to be proven, a whole host of other conjectures about
the dynamics of the quadratics would immediately follow, for example various rigidity conjectures and
the no invariant line fields conjecture for quadratic Julia sets. Sadly we won’t be covering any of this.
The survey [Benini, 2018] has excellent exposition on all of the aforementioned.

Instead, our final chapter explores one particular way that local connectivity of the Mandelbrot set
could be applied. The landing of all parameter rays, and the associated parametrisation of the boundary
(both given by the Carathéodory-Torhorst Theorem 3.28) allows us to build a topological space called
the pinched disc model of M . In fact, we are able to construct the pinched disc model even without
local connectivity, either using the landing of all parameter rays of rational external angle, or inducing
the model from similar models for Julia sets. In any case, the model is homeomorphic to M if and
only if M is locally connected.

If the constructed space is indeed homeomorphic to M , then we may use it to prove results about M
and therefore about the dynamics of the quadratics. We will even sketch a proof of how this idea can
be used to show that the MLC conjecture implies density of hyperbolicity for complex quadratic maps.

We present here the construction of the pinched disc model via the Quadratic Minor Lamination. We
rely heavily on the sources [Thurston, 1985] (and its appendix [Schleicher, 2009]), and [Douady, 1993].

5.1 Geodesics, convex hulls, and hyperbolic geometry

Since the definition of a lamination requires it, we begin by familiarising ourselves with notions of
Euclidean and hyperbolic geometry on the closed unit disc.11

Although the definitions that are given below extend naturally to any number of contexts, we give
them in the rather narrow context of the unit disc D(0, 1), since this is all that an explanation of the
pinched disc model demands. We begin in the familiar Euclidean setting.

Definition 5.1 A Euclidean geodesic in D(0, 1) is a straight line between any two points x, y ∈ D(0, 1).
We denote the Euclidean geodesic between x and y by EG(x, y).

Clearly, for x, y ∈ D(0, 1), the Euclidean geodesic EG(x, y) gives the shortest path between x and y.
Indeed, it is not difficult to explicitly determine this geodesic as EG(x, y) = {(1− t)x+ ty : t ∈ [0, 1]}.

Definition 5.2 Let E ⊆ D(0, 1). Then E is Euclidean convex if EG(x, y) ⊆ E for all x, y ∈ E. The
Euclidean convex hull of E is the smallest convex set C ⊂ D(0, 1) such that E ⊆ C. We denote the
Euclidean convex hull of E by ECH(E).

Note that ECH(E) is well-defined for all E ⊆ D(0, 1), since D(0, 1) is itself Euclidean convex. We can
think of convex sets as being those in which we are always able to take the most direct route between
any two points, while staying in the set.

Example 5.3 Let x, y ∈ D(0, 1), and let g = EG(x, y). Then ECH(g) = g. More generally, any point,
line or polygon in D(0, 1) is its own convex hull.

11We note now that the adjective hyperbolic is getting a bit overloaded, given earlier and future discussions of
hyperbolic dynamics, hyperbolic maps, density of hyperbolicity etc. It is important to keep in mind that this ‘hyperbolic’
is distinct from the one referenced in hyperbolic geometry.
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Figure 31: A collection of points is shown. Let X be the set of all these points. Then the convex hull
ECH(X) of X is the region bounded by the blue polygon. This image was created by Wikipedia user

Maksim, and released into the public domain by them.

The above is, technically, all that we need - we could stop here, and define laminations, the quadratic
minor lamination, and the pinched disc model using Euclidean geodesics and Euclidean convex hulls,
omitting any part of hyperbolic geometry. However, the theory goes through just the same if we instead
use the hyperbolic geometry equivalents of the above definitions, and this makes for far more compre-
hensible pictures, as well as bringing out a nice visual aspect of the relationship between laminations
and external rays. Thus our next step is to define hyperbolic geodesics, and hyperbolic convex hulls.
We hope that it was useful to first define the Euclidean versions, as clear and very familiar analogues
to the hyperbolic versions that we will use.

For thousands of years, the geometry encountered in mathematics was that defined by Euclid in his
Elements. Euclid started from 10 fundamental axioms and postulates of geometry, and used these to
prove hundreds of propositions and theorems. Euclid’s methods were immensely successful, and his
axiomatic approach set the standard for the millenia of mathematics that followed. The 5th and final
postulate, called the parallel postulate, stated: given a line in the plane and a point not on the line, there
is exactly one line through the point which does not intersect the first line12. The parallel postulate
become something of a controversial matter - it stood out among the axioms and postulates as the
most complicated (contrast with Axiom 5: "The whole is greater than the part"), and mathematicians
generally believed that it should be possible to prove the parallel postulate from the other 9 axioms
and postulates. A proof, however, never materialised, and the list of mathematicians who attempted
a proof and failed ranges from Proclus of Constantinople (c. 410 A.D.) to Adrien-Marie Legendre (c.
1800 A.D.).

Eventually, it was shown that the parallel postulate does not necessarily follow from the other axioms
and postulates. Furthermore, we may even get rid of the parallel postulate, and replace it with
something else, and in the process obtain a whole new geometry, which is logically consistent, and
perhaps even rather elegant. Hyperbolic geometry is what we obtain when we instead use the following
axiom: given a line in the plane and a point not on the line, there are at least two lines through the
point which do not intersect the first line.

We will work with hyperbolic geometry only in the unit disc, and this allows us to think in terms of
orthogonal circles.

Definition 5.4 Let C,D be circles in the plane which intersect in two points. Then C and D are
orthogonal if, at both points of intersection, the tangents of the circles are at a right angle to one
another.

12Actually, this is Playfair’s axiom, the modern (relative to Euclid, at least!) equivalent of the parallel postulate.
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Figure 32: Two orthogonal circles. Supposing for a moment that the larger circle is C(0, 1), then the
part of the smaller circle that is contained in D(0, 1) is precisely the hyperbolic geodesic between the
two points of intersection of the circles. This image was taken from the Wolfram MathWorld entry on

orthogonal circles, written by Eric W. Weisstein:
https://mathworld.wolfram.com/OrthogonalCircles.html

Definition 5.5 A hyperbolic geodesic in D(0, 1) is a curve between two points x, y ∈ D(0, 1) such that
the curve is a subset of some circle that is orthogonal to C(0, 1), and that the curve is contained in
D(0, 1). We denote the hyperbolic geodesic between x and y by HG(x, y).

While this definition more than suffices for our purposes, there are a couple of unresolved issues with
it. First of all, it does not seem immediately clear that there is a unique hyperbolic geodesic between
any x, y ∈ D(0, 1). Secondly, it makes the relationship between Euclidean and hyperbolic geodesics
seem obscure. We briefly attempt to resolve these. On D(0, 1), it is possible to define a ‘hyperbolic
distance function’, which gives rise to a hyperbolic geometry on D(0, 1). For this distance function,
there is a unique shortest path between any two points x, y ∈ D(0, 1), and this path is precisely the
hyperbolic geodesic as defined above. Thus, EG(x, y) is well-defined for any x, y ∈ D(0, 1), and the
hyperbolic geodesic between x and y gives the shortest path between x and y in hyperbolic space, just
as the Euclidean geodesic gives the shortest path between x and y in Euclidean space.

We will be exclusively concerned with hyperbolic geodesics between points on the boundary of D(0, 1).
The following is a fun tool I’ve made on Desmos for getting an intuition for these objects!

https://www.desmos.com/calculator/robo02fsnr

As in the Euclidean case, we are able to define convexity.

Definition 5.6 Let E ⊆ D(0, 1). Then E is hyperbolic convex if HG(x, y) ⊆ E for all x, y ∈ E. The
hyperbolic convex hull of E is the smallest hyperbolic convex set C ⊆ D(0, 1) such that E ⊆ C. We
denote the hyperbolic convex hull of E by HCH(E).

Just as before, HCH(E) is well-defined for all E ⊆ D(0, 1), since D(0, 1) is itself hyperbolic convex.

Before moving on to laminations, we reiterate that we could freely use either Euclidean or hyperbolic
geodesics/convex hulls where we need them, and that it is advantageous to use the hyperbolic ones.
For this reason, we will drop the adjective ‘hyperbolic’ for these objects, i.e. simply say ‘geodesic’ for
hyperbolic geodesics in D(0, 1), or ‘convex hull’ for the hyperbolic convex hull of a set.

5.2 Laminations, and the pinched disc model for Julia sets

Consider the geodesic l = HG(x, y) for x, y ∈ D(0, 1). It is defined in a purely geometric sense, but we
are more interested in it as a set-theoretic object. That is, l is a set consisting of all the points on the
shortest path between x and y. This will be important to keep in mind.
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Definition 5.7 A proto-lamination is a set L of geodesics in D(0, 1), such that for all l ∈ L, the
endpoints of l belong to C(0, 1).

Thus, a proto-lamination consists of geodesics that are ‘hyperbolic chords’ of C(0, 1) in the traditional
sense of chords of a circle. The geodesics in a proto-lamination are called leaves. Since the geodesics
themselves are sets, a proto-lamination is a set of sets. Recall the ‘big cup’ notation

⋃
S for a set of

sets S, which denotes the set of all elements which are in some element of S.

Definition 5.8 A lamination is a proto-lamination L such that:

(i) Distinct leaves of L can intersect only at their endpoints, and

(ii) C(0, 1) ∪ (
⋃
L) is closed in D(0, 1).

Figures 33, 34, 35 and 36 (illustrations by Ella Matza) are various examples of collections of geodesics
in D(0, 1) which do or do not form laminations.

Figure 33: The set L1 consisting of the above single geodesic does not form a proto-lamination and
therefore not a lamination, since the endpoints of the geodesic are in B(0, 1) instead of the boundary

C(0, 1).

Figure 34: The collection L2 of these two leaves forms a proto-lamination, but it is not a lamination
since the two leaves intersect in B(0, 1).
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Figure 35: The collection L3 of these 6 leaves forms a lamination. The endpoints of each leaf are on
C(0, 1), and the leaves intersect each other only on C(0, 1) at their endpoints. It is closed since there

are only finitely many leaves.

Figure 36: Let L4 be the proto-lamination defined as follows. Choose a strictly monotonically
increasing sequence (xn)n∈N such that {xn : n ∈ N} ⊂ (0, 1/4) and xn → 1/4 as n→∞. For each
n ∈ N, let an = e2πixn , bn = e2πi(1−xn), and define the leaf ln = HG(an, bn). L4 is illustrated above.
The leaves are pairwise disjoint, but L4 does not contain the ‘limit leaf’ l = HG(i,−i), which is the
vertical diameter of D(0, 1), and thus C(0, 1) ∪ (

⋃
L4) is not closed in D(0, 1). The set L4 ∪ {l} is a

lamination.

Let L be a lamination. A gap of L is the closure of a connected component of D(0, 1) \ (
⋃
L). That is,

we take the unit disc and slice it up by cutting through all the leaves with our mathematical scissors.
The gaps of L are the closures of the resulting cut-up pieces. Let G(L) denote the set of all gaps of L.
For a gap G ∈ G(L), we may define the periphery of G as P (G) = G∩C(0, 1), the set of points where
the gap touches the boundary of D(0, 1).

For the rest of this section, reserve f to be the function f : C(0, 1) → C(0, 1) given by f(z) = z2.
It is through this map that we find something of a connection between particular laminations and
quadratic dynamics. The particular laminations satisfy certain properties regarding the map f , as the
next definition outlines.
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Definition 5.9 A lamination L is quadratic invariant if the following all hold:

(i) (Forward invariance) For all HG(x, y) ∈ L, we have either HG(f(x), f(y)) ∈ L,
or f(x) = f(y)

(ii) (Backward invariance) For all HG(x, y) ∈ L, we have that HG(x1, y1) and HG(x2, y2)
are distinct leaves of L, where f−1(x) = {x1, x2} and f−1(y) = {y1, y2}

(iii) (Gap invariance) For all gaps G ∈ G(L), the image under f of the periphery of G
has a convex hull which is either a gap, a leaf or a single point.

So, forward invariance means that the endpoints of a leaf either map to the endpoints of another leaf
or collapse under f to a point. Backward invariance means that the pre-images of the endpoints of
every leaf give us two of the leaves of L. Gap invariance means that, we find a way to map a gap by
mapping its periphery, and then we come out of the periphery using the convex hull, and that for any
gap, this process gives a gap, a leaf, or a point.

Let L be a quadratic invariant lamination, and let L be the the union of all leaves and gaps of L. Then
the map f may be extended to a map

f̃ : C(0, 1) ∪ L → C(0, 1) ∪ L

We start with the leaves, using forward invariance: let HG(x, y) ∈ L. If f(x) = f(y), then set
f̃(t) = f(x) for all t ∈ HG(x, y). Otherwise, we simply map each HG(x, y) in a linear fashion to
HG(f(x), f(y)). The gaps are trickier. Let G ∈ G(L). By gap invariance, we obtain either a gap
H ∈ G(L), a leaf HG(x, y) ∈ L, or a point z ∈ C(0, 1). The single point case is easy, as we can map
every point in the gap to z. We do not delve too deeply into the other cases, except for saying that
the image of the gap as a whole will be either H or HG(x, y), depending on which one exists!

Suppose we have a quadratic invariant lamination L which has some leaf HG(x, y). Since x, y ∈ C(0, 1),
we may write

x = e2πis, y = e2πit

for s, t ∈ R/Z. Recall that the distance between s and t in R/Z is given by min{|t− s|, |1− t− s|}, and
is the smallest distance you would need to traverse from x to y via C(0, 1). We define the boundary
length of HG(x, y) to be this distance. Note that the boundary length is always less than or equal to
1/2.

Proposition 5.10 Let L be a quadratic invariant lamination, and define M to be the supremum of
the boundary length, taken over all of L’s leaves. Then there exists l ∈ L that has boundary length M .
That is, L has a maximal leaf with respect to boundary length.

Any leaf l ∈ L which has maximal boundary length is called a major leaf. If M = 1/2, then l is a
diameter of C(0, 1), and thus is the unique major leaf of L. If M 6= 1/2, then L has precisely 2 major
leaves.

Proposition 5.11 Let L be a quadratic invariant lamination with two major leaves m1 and m2. Then
f̃(m1) = f̃(m2).

The unique leaf in the image of the major leaves is called the minor leaf. It’s possible for the minor
leaf to be a point and not a leaf, in which case we say it is a degenerate minor leaf.

The reason for our interest in quadratic invariant laminations is that they can be used to build topo-
logical models, not only of the Mandelbrot set, but of Julia sets too. Suppose fc ∈ F with J(c) locally
connected. Then by Corollary 3.29, we have a parametrisation γc : C(0, 1) → J(c) of J(c), which is
continuous and surjective, and for each t ∈ R/Z, the dynamical ray Rc(t) lands at the point γc(e2πit).
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We will use the landing of all the dynamical rays to associate fc, or more accurately K(c), with a
lamination Λc. For each z ∈ J(c), there is a finite number of rays landing at z, say Rc(t1), . . . , Rc(tk).
Let z1 = e2πit1 , . . . , zk = e2πitk , and define

λc(z) = {HG(z1, z2),HG(z2, z3), . . . ,HG(zk−1, zk),HG(zk, z1)}

Then we may define the lamination
Λc =

⋃
z∈J(c)

λc(z)

So, if there are two dynamical rays landing at a point of the Julia set, the lamination has a leaf whose
endpoints on the circle are given by the external angles of the rays. If there are many dynamical rays
landing at a point, we do the same thing, but with each consecutive pair of rays.

Proposition 5.12 Let c ∈ M be such that J(c) is locally connected. Then the above construction Λc
is a quadratic invariant lamination.

The minor leaf of Λc is called the characteristic leaf of fc.

Figure 37: The lamination Λω constructed from the Douady rabbit quadratic fω. The characteristic
leaf of fω is shown in blue. Since fω is hyperbolic, it may be shown that J(ω) is locally connected, so
that K̃(ω) is homeomorphic to K(ω). The grey gap shown above is mapped by the quotient map πω
to the point µω(α), where α ≈ −0.276 + 0.48i is the least repelling fixed point of fω (see Figure 26 -

there, α is shown as the landing point of the 3 rays Rω(1/7), Rω(2/7) and Rω(4/7), which are
precisely the rays forming the grey gap shown in this figure). This image is taken from [Exall, 2010],

where it is Figure 2.6 on page 21.

Given that J(c) is locally connected, the lamination Λc can be used to construct a topological space
known as the abstract filled-in Julia set for fc or the pinched disc model of K(c). As the name suggests,
we begin with the space D(0, 1). Define an equivalence relation ∼c on D(0, 1) in the following way.
Let z1, z2 ∈ D(0, 1) be arbitrary. Of course if z1 = z2, then we must have z1 ∼c z2, so suppose that
z1 6= z2. If there is a leaf l ∈ Λc such that z1, z2 ∈ l, then z1 ∼c z2. Otherwise, if there is a gap
G ∈ G(Λc) such that G has a finite periphery and z1, z2 ∈ G, then z1 ∼c z2. If no such leaf or gap
exists, then z1 6∼c z2. That is, ∼c is the smallest equivalence relation on D(0, 1) which idenifies all
points of a given leaf, and which identifies all points of a given (finite periphery) gap.

Define K̃(c) = D(0, 1)/∼c , i.e. K̃(c) is the topological space given by taking the disc D(0, 1), and then
pinching each leaf and each gap with finite periphery into a single point. K̃(c) is the pinched disc model
of K(c). We note briefly that it is possible to embed K̃(c) as a subset of C. Let πc : D(0, 1) → K̃(c)
be the quotient map.
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It is possible to obtain a homeomorphism µc : K(c)→ K̃(c). We first define µc on the boundary. For
any z ∈ J(c), consider the pre-image γ−1c (z) of z under the parametrisation of J(c). Since only finitely
many dynamical rays can land at z, this pre-image is finite, say γ−1c (z) = {z1, . . . , zk} with zi = e2πiti

for each i = 1, . . . , k. Then the dynamical rays landing at z are Rc(t1), . . . , Rc(tk), so that by definition
of Λc, we have

HG(z1, z2), HG(z2, z3), . . . HG(zk−1, zk), HG(zk, z1) ∈ Λc

Then by definition of ∼c, we must have

z1 ∼c z2 ∼c . . . ∼c zk−1 ∼c zk

and therefore πc(z1) = . . . = πc(zk). Then we simply set µc(z) = πc(z1). That is, a point on the Julia
set is mapped to the unique equivalence class of K̃(c) that contains the points e2πit, where t is the
external angle of any one of the dynamical rays landing at z.

Now suppose z ∈ K(c)\J(c). Then z ∈ int(K(c)). Let U be the connected component of int(K(c))
that contains z. Since c ∈M , it may be shown that U is conformally equivalent to B(0, 1). Since J(c)
is locally connected, there are rays landing at all points of ∂U . These rays will correspond to some
collection of leaves in Λc which will form a gap whose periphery is infinite. The subset πc(U) ⊆ K̃(c)

will be conformally equivalent to B(0, 1) in the embedding of K̃(c) in C. It follows that we may map
U to πc(U) in a homeomorphic way. For all u ∈ U , define µc(u) so that µc|U : U → πc(U) is some such
homeomorphism.

Note that every part of the construction of K̃(c) was dependent on the parametrisation γc : C(0, 1)→
J(c) given by the landing of all the rays, which exists if and only if J(c) is locally connected. For
c ∈M such that J(c) is not locally connected, we are still able to construct a pinched disc model K̃(c)

for K(c) in a similar (albeit slightly more technical) way. In this case, K̃(c) will be locally connected
while K(c) will not be locally connected. Thus we certainly don’t have a homeomorphism, but we
do obtain a continuous surjection µc : K(c) → K̃(c). In this sense, the injectivity of the map µc is
equivalent to the local connectivity of J(c). As is so often the case, this situation has a nice parallel
in the parameter space.

56



5.3 The Quadratic Minor Lamination and the pinched disc model of M

We were able to construct an abstract topological model for a locally connected Julia set J(c) precisely
because of the local connectivity, which tells us that all rays land so that we can construct the lamination
Λc. Without assuming MLC, we cannot immediately do the same for M , as we do not know that all
parameter rays land (recall that all parameter rays with rational external angle do indeed land, and that
the landing of all parameter rays with irrational external angles is equivalent to the MLC conjecture).
Instead, we must take a more roundabout route. Recall that the minor leaf of a quadratic invariant
lamination L is the unique leaf l ∈ L which is the image of all of the leaves of L that have maximal
boundary length.

Definition 5.13 The Quadratic Minor Lamination is the set QML consisting of all the leaves that
are the minor leaf of some quadratic invariant lamination.

Since every quadratic invariant lamination appears as the lamination Λc for some c ∈M , the quadratic
minor lamination is precisely the collection of all characteristic leaves of quadratic maps. The front page
of this document displays an image of an approximation of QML, created using Lavaurs’ algorithm.

Proposition 5.14 QML is a quadratic invariant lamination.

Suppose M is locally connected. In this case, the relationship between QML and M is precisely the
same as the relationship between Λc and K(c). In particular, HG(e2πit1 , e2πit2) ∈ QML if and only if
the parameter rays RM (t1) and RM (t2) land at the same point of ∂M . This does not hold if M is not
locally connected, since then we would have some leaf HG(e2πit1 , e2πit2) ∈ QML for irrational t1, t2,
with the parameter rays RM (t1) and RM (t2) not landing at all.

Figure 38: Some paramter rays of M , and the corresponding minor leaves in QML. In QML, the
minor leaf of Λω is drawn in blue (see Figure 37). It corresponds to the pair of rays drawn in blue
which land at the root of the hyperbolic component containing ω (whose location is marked in red).
Any quadratic in this hyperbolic component will have the same lamination as fω, and in particular
will have their characteristic leaf being the blue leaf above. This image has been modified from the

form it takes in its source, which is https://mostlymaths.net, as created by Ruben Berenguel.
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QML has two different types of gaps. Recall that the periphery P (G) of a gap G is the intersection
of the gap with C(0, 1).

Proposition 5.15 Let G ∈ G(QML). Then either:

(i) P (G) is finite, and we say G is a P-gap, or

(ii) P (G) is countably infinite, and we say G is an H-gap.

There are a fair few interesting observations to be made about P-gaps and H-gaps of QML. For
example, there is a bijection between P-gaps of QML and Misiurewicz parameters in M , and similarly
a bijection between H-gaps and hyperbolic components, with the bijections preserving certain shared
features between the gaps and the subsets of M . For more details on this, see any of the 3 excellent
references given at the start of this section.

We are now in a position to define an equivalence relation ∼M on D(0, 1). Let z1, z2 ∈ D(0, 1) be
arbitrary. Of course if z1 = z2, then we must have z1 ∼M z2, so suppose that z1 6= z2. If there is a
leaf l ∈ QML such that z1, z2 ∈ l, then z1 ∼M z2. Otherwise, if there is a P-gap G ∈ G(QML) such
that z1, z2 ∈ G, then z1 ∼M z2. If no such leaf or P-gap exists, then z1 6∼M z2. That is ∼M is the
smallest equivalence relation on D(0, 1) which identifies all points on a given leaf, and which identifies
all points on a given P-gap.

Just as in the dynamical case, we obtain the pinched disc model M̃ = D(0, 1)/∼M of M , by pinching
each leaf and each P-gap of QML into a single point, and the space M̃ can be embedded as a subset
of C. The below theorem from [Douady, 1993] is also in parallel to the dynamical case.

Theorem 5.16 There exists a continuous surjection µM : M → M̃ which is injective if and only if M
is locally connected. Thus, M is homeomorphic to M̃ if and only if M is locally connected.

The “only if” part of the latter statement follows because it may be shown that M̃ is locally connected.

Let πM : D(0, 1) → M̃ be the quotient map. The map µM is constructed in the following way. For a
hyperbolic component H, there is a unique H-gap G of QML corresponding to H. In the embedding
of M̃ in the plane, we will have that πM (G) is conformally equivalent to B(0, 1). It follows that H
and πM (G) can be mapped to one another in some homeomorphic way, and we let µM |H be some such
way. For other points, we essentially consider a sequence of rational parameter ray pairs (two rays with
rational external angle that land at a shared point) whose wakes form a nested sequence of subsets, all
containing the point. These wakes become as small as is possible so that they still contain the point.
This gives a sequence of leaves in QML that will have a limit leaf. Then, πM will identify the entire
limit leaf into one point in M̃ , which is where we map our point from M . This is a rather informal
and perhaps not wholly accurate description of the process, which is best described using fibers of M
- see [Schleicher, 2009] for the full details.
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5.4 The implication (MLC)⇒ (DHC)

Just as in the classical text [Douady and Hubbard, 1985a], our final section is dedicated to a proof of
Theorem 3.18, i.e. that local connectivity of M implies density of hyperbolicity for complex quadratic
maps! Unlike Douady and Hubbard, our proof is the roughest of sketches, and is as presented in
[Schleicher, 2009]. Recall that a ghost component U of M is a connected component of int(M) such
that for all c ∈ U , the map fc has no attracting cycles. Density of hyperbolicity for complex quadratic
maps is equivalent to the non-existence of ghost components in M (see the concluding remarks of
Section 3.2).

It is via the map µM that we show the implication. Along with the information about µM given in The-
orem 5.16, we will require the following, which follows from the construction of µM in [Schleicher, 2009],
as well as the following.

Proposition 5.17 Suppose U is a ghost component of M . Then µM is constant on U , i.e the image
of any given ghost component of M is a single point of M̃ .

This is a consequence of the fact that ghost components are ‘contained in a single fiber’, itself a
consequence of Douady and Hubbard’s Branch Theorem which we mention precisely because of its
significance in showing that MLC implies DHC. Proposition 5.17 allows us to bring in density of
hyperbolicity.

Corollary 5.18 Suppose int(µ−1M (x)) = ∅ for all x ∈ M̃ . Then hyperbolic maps are dense in the space
of complex quadratic maps.

Proof. We instead demonstrate the contrapositive statement:

If hyperbolicity is not dense for complex quadratics, then there exists x ∈ M̃ such that
int(µ−1M (x)) 6= ∅.

Suppose hyperbolicity is not dense for complex quadratics. Then M has some ghost component U .
Since U is a connected component of the interior ofM , it has a non-empty interior. By Proposition 5.17,
µM is constant on U , say µM (U) = {x} for some x ∈ M̃ . Then µ−1M (x) = U has a non-empty interior,
as required.

The converse is also true, and would quickly follow, but we have no use for it. Now, we may finish
with:

Proof of Theorem 3.18: Suppose M is locally connected. Then by Theorem 5.16, µM is a bijection.
Let x ∈ M̃ be arbitrary. Then the pre-image of x is µ−1M (x) = {c}, for some c ∈ M . In particular,
int(µ−1M (x)) = ∅, so by Corollary 5.18, hyperbolic maps are dense in the space of complex quadratic
maps.
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