MAT126 Homework 4 Solutions

Problem 1. Find the area of the bounded region lying between the curves $y = x^2$ and $y = 4x - x^2$.

Solution: The curves intersect when $x^2 = 4x - x^2$, which we solve to get $x = 0$ and $x = 2$. Plugging these values into either of our curve equations gives $y = 0$ and $y = 4$, respectively. With this information, and knowing the shapes of the curves from their equations, we may sketch the situation.

The area of the region is then given by

$$
A = \int_0^2 4x - x^2 - x^2 dx
$$

= $\left[2x^2 - \frac{2}{3}x^3 \right]_0^2$
= 8/3.

Problem 2. Find the area of the region enclosed by the line $y = x + 1$ and the parabola $y^2 = 6x + 22$.

Solution: Again, we find the points of intersection and sketch the region in question. The line and parabola intersect when $(x + 1)^2 = 6x + 22$, which solves to $x = -3$ and $x = 7$. The points of intersection are $(-3, -2)$ and $(7, 8)$. The region looks something like this:

If we were to integrate with respect to x , the curve at the bottom of the region would change midway through. This is perfectly doable, but we proceed with the cleaner method of integrating with respect to y . First, we write our curve equations as functions of y, which take the form $x = y - 1$ and $x = (y^2 - 22)/6$.

The area of the region is then given by

$$
A = \int_{-2}^{8} y - 1 - y^2/6 + 22/6 \, dy
$$

= $\left[\frac{y^2}{2} - y - \frac{y^3}{18} + \frac{22y}{6} \right]_{-2}^{8}$
= 250/9.

Problem 3. A pillar that is π feet tall is made so that every horizontal cross-section at height h is a square of side length

(a) Write an integral which represents the volume of the pillar.

(b) Evaluate the integral to find the volume of the pillar.

Solution: (a) The volume V is given by $V = \int_0^{\pi} A(h) dh$, where $A(h)$ is the cross-sectional area at height h. Since cross-sections are squares with side length $s(h)$, we find that

$$
V = \int_0^{\pi} (s(h))^2 dh
$$

= $\int_0^{\pi} 9 - 6 \sin(h) + \sin^2(h) dh.$

(b)

$$
V = \int_0^{\pi} 9 - 6\sin(h) + \sin^2(h) dh
$$

=
$$
\int_0^{\pi} 9 - 6\sin(h) + \frac{1}{2} (1 - \cos(2h)) dh
$$

=
$$
\int_0^{\pi} \frac{19}{2} - 6\sin(h) - \frac{1}{2}\cos(2h) dh
$$

=
$$
\left[\frac{19}{2}h + 6\cos(h) - \frac{1}{4}\sin(2h) \right]_0^{\pi}
$$

=
$$
\frac{19}{2}\pi - 6 - 6
$$

=
$$
\frac{19}{2}\pi - 12.
$$

Problem 4. Consider the region bounded by the below curves, with $x > 0$.

$$
y = 4 - x^2, \quad y = 4x - 1, \quad x = 0.
$$

What is the volume of the solid obtained by rotating this region about the line $y = -1$?

Solution: Since $x > 0$, we need only graph the situation to the right of $x = 0$ (which, we note, is the y-axis). The other two curves intersect when $4 - x^2 = 4x - 1$, which we solve to get $x = -5$ and $x = 1$. Since the region only involves x values bigger than 0, we care only about $x = 1$, which has $y = 3$ on both of the curves $y = 4 - x^2$ and $y = 4x - 1$. We are ready to sketch the region.

After rotating the region about $y = -1$, a typical cross-section cut parallel to the y-axis (say, at $x = x_0$) looks like this:

where $y_1 = 4x_0$ is the distance from $(x_0, -1)$ to $(x_0, 4x_0 - 1)$, and $y_2 = 5 - x_0^2$ $\frac{2}{0}$ is the distance from $(x_0, -1)$ to $(x_0, 4 - x_0^2)$ $_{0}^{2}$). It

follows that, in general, the area of an arbitrary cross-section is given by

$$
A(x) = \pi (y_2^2 - y_1^2)
$$

= $\pi (25 - 10x^2 + x^4 - 16x^2)$
= $\pi (x^4 - 26x^2 + 25)$.

Finally, we integrate over the x-values in the region to get the solid's volume.

$$
V = \int_0^1 A(x) dx
$$

= $\pi \int_0^1 x^4 - 26x^2 + 25 dx$
= $\pi \left[\frac{x^5}{5} - \frac{26x^3}{3} + 25x \right]_0^1$
= $\pi \left(\frac{1}{5} - \frac{26}{3} + 25 \right) = \frac{248}{15} \pi.$

Problem 5. Let R be the region between $y = x^2$ and $y = 2x$.

(a) Find the points of intersection of these two curves. (Okay, one of them is a line; lines are just straight curves!!)

(b) Sketch the region R. Pick appropriate scales for x and y .

(c) Use cylindrical shells to find the volume of the solid generated when the region R is revolved about the x-axis.

Solution: (a) We have $x^2 = 2x$, so $x = 0$ and $x = 2$. Thus the points of intersection are $(0, 0)$ and $(2, 4)$.

(b) We sketch R below.

(c) To use shells, we must write the equations of the curves as functions of y. Noting that the boundary of our region always has non-negative x and y values (so that we must take the positive square root), we get $x = \sqrt{y}$ and $x = y/2$. Finally, then, we find that

$$
V = \pi \int_0^4 (\sqrt{y})^2 - \left(\frac{1}{2}y\right)^2 dy
$$

= $\pi \int_0^4 y - \frac{1}{4}y^2 dy$
= $\pi \left[\frac{y^2}{2} - \frac{y^3}{12}\right]_0^4$
= $\pi \left(\frac{16}{2} - \frac{64}{12}\right)$
= $\frac{8}{3}\pi$.