MAT126 Homework 4

Problem 1. Find the area of the bounded region lying between the curves $y = x^2$ and $y = 4x - x^2$.

Problem 2. Find the area of the region enclosed by the line y = x + 1 and the parabola $y^2 = 6x + 22$.

Problem 3. A pillar that is π feet tall is made so that every horizontal cross-section at height h is a square of side length

(a) Write an integral which represents the volume of the pillar.

(b) Evaluate the integral to find the volume of the pillar.

Problem 4. Consider the region bounded by the below curves, with x > 0.

$$y = 4 - x^2$$
, $y = 4x - 1$, $x = 0$.

What is the volume of the solid obtained by rotating this region about the line y = -1?

Problem 5. Let R be the region between $y = x^2$ and y = 2x.

(a) Find the points of intersection of these two curves. (Okay, one of them is a line; lines are just straight curves!!)

(b) Sketch the region R. Pick appropriate scales for x and y.

(c) Use cylindrical shells to find the volume of the solid generated when the region R is revolved about the x-axis.