
MAT126 Homework 3 Solutions

Problem 1. After performing a long division, evaluate the
integral ∫

x5 + 4x3 + 2x2 + 1

x2 + 1
dx.

Solution: Long division gives

x5 + 4x3 + 2x2 + 1

x2 + 1
= x3 + 3x+ 2− 3x+ 1

x2 + 1
,

and therefore∫
x5 + 4x3 + 2x2 + 1

x2 + 1
dx = x4/4 + 3x2/2 + 2x−

∫
3x+ 1

x2 + 1
dx

= x4/4 + 3x2/2 + 2x

− 3

2

∫
2x

x2 + 1
dx−

∫
1

x2 + 1
dx.

Of these two integral we have left to evaluate, we have factored
3/2 out of the first one so that the derivative of x2 + 1 is on
the numerator, and thus the integral will be ln |x2+1|. For the
other integral, recall that when working with partial fractions,
we will frequently encounter the integral∫

1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ c.

(This will be given to you in the final.) In our case, a = 1 gives
us our answer. In summary, we have∫

x5 + 4x3 + 2x2 + 1

x2 + 1
dx =

x4

4
+
3x2

2
+2x−3

2
ln |x2+1|+tan−1(x)+c.

Problem 2. Consider the integral∫
x+ 2

x3 − 6x2 + 9x
dx.
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(a) Write the integrand in its partial fraction form, and find the
resulting constants A,B and C.

(b) Evaluate the integral.

Solution: (a) The denominator factorizes as x3 − 6x2 + 9x =
x(x − 3)2, so we have the repeated linear factor (x − 3). The
corresponding partial fraction form is

x+ 2

x(x− 3)2
=

A

x
+

B

x− 3
+

C

(x− 3)2
.

Multiplying through x(x− 3)2 gives

x+ 2 = A(x− 3)2 +Bx(x− 3) + Cx.

When x = 0, this gives 2 = 9A, so A = 2/9. When x = 3,
we instead get 5 = 3C, so C = 5/3. To find B, we could set
x to some other value, e.g. x = 1, and use the values of A
and C. In this case, it is quicker to ’equate coefficients’. In the
equation above, the LHS and RHS are identically equal, so the
coefficients of x2, x and 1 must be the same on each side. The
coefficient of x2 is 0 on the left, and A + B on the right, so
A+B = 0 and thus B = −A = −2/9. Therefore,

x+ 2

x(x− 3)2
=

2/9

x
+

−2/9

x− 3
+

5/3

(x− 3)2
.

(b) We have three integrals to evaluate. The first two are hope-
fully familiar by now. For the third one, we use the substitution
u = x− 3.∫

x+ 2

x3 − 6x2 + 9x
dx =

2/9∫ 1

x
dx− 2/9∫ 1

x− 3
dx+

5/3∫ 1

(x− 3)2
dx

=
2

9
ln |x| − 2

9
ln |x− 3|+ 5

3

∫
1

u2
du

=
2

9
ln |x| − 2

9
ln |x− 3|+ 5

3
· −1

2
u−3 + c

=
2

9
ln |x| − 2

9
ln |x− 3| − 5

6
· 1

(x− 3)3
+ c.
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Problem 3. Consider the integral∫ 3/2

0

x cos(x2) dx.

(a) Approximate the integral using the mid-point rule with
n = 5. Give your answer to 4 decimal places.

(b) Approximate the integral using the trapezoidal rule with
n = 15. Give your answer to 4 decimal places.

(c) Denote the error in your approximations by EM and ET ,
respectively. By first finding a bound for the second derivative
of f(x) = x cos(x2), use the error bounds we have seen in class
to bound |EM | and |ET |. Leave your answers in exact form.

(d) What value of n should we choose to guarantee that both
the mid-point rule and trapezoidal rule will have error less than
0.01?

Solution: (a) Since we are using the mid-point rule, we must
first find the mid-points. With n = 5, there will be 5 sub-
intervals and thus 5 mid-points; call them x1, x2, x3 and x5. We
are integrating over the interval [0, 3/2], so ∆x = (b − a)/n =
(3/2 − 0)/5 = 3/10. Thus, the first sub-interval is [0, 3/10].
We can find the mid-point of this sub-interval by averaging
the two end-points, giving x1 = (0 + 3/10)/2 = 3/20. Then,
since each mid-point will be a distance of ∆x apart, we get
x2 = x1 + ∆x = 9/20, x3 = x2 + ∆x = 15/20 = 3/4, x4 =
x3 + ∆x = 21/20 and finally x5 = x4 + ∆x = 27/20. All that
remains is to plug these values into the mid-point rule formula.
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Letting f(x) = x cos(x2), we get∫ 3/2

0

x cos(x2) dx ≈ ∆x(f(x1) + f(x2) + f(x3) + f(x4) + f(x5))

=
3

10

(
3

20
cos

((
3

20

)2
)

+
9

20
cos

((
9

20

)2
)

+
3

4
cos

((
3

4

)2
)

+
21

20
cos

((
21

20

)2
)

+
27

20
cos

((
27

20

)2
))

.

Plugging this into our calculator gives our approximation, to 4
decimal places as requested, as∫ 3/2

0

x cos(x2) dx ≈ 0.4089.

(b) For the trapezoidal rule, we need all 16 of the end-points
from our 15 sub-intervals. Firstly, we have ∆x = (b − a)/n =
(3/2− 0)/15 = 1/10. Calling the end-points x0, x1, . . . , x15, we
see that xi = i∆x = i/10 for i = 0, 1, . . . , 15. The formula for
the trapezoidal rule is∫ 3/2

0

x cos(x2) dx ≈ ∆x

2
(f(x0) + 2f(x1) + 2f(x2) + . . .

+ 2f(x14) + f(x15))

Now, one could write this out in full and enter it into a calcula-
tor. It is quicker, though, to use some online summation calcula-
tor, for instance WolframAlpha. Typing in “sum of i

10 cos((
i
10)

2)
from i = 1 to i = 14” gives 4.31866584...

Now, since the terms f(x1), f(x2), . . . , f(x14) appear twice, we
multiply this by 2. Then we still have f(x0) and f(x15) to add
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on. We find that

f(x0) = f(0) = 0 cos(02) = 0,

f(x15) = f(3/2) =
3

2
cos

(
9

4

)
,

so adding this on to 2× 4.31866584 gives 7.69507125...

Finally, we multiply by ∆x/2 to get∫ 3/2

0

x cos(x2) dx ≈ 0.3848.

(c) Recall that our error bound method requires us to first
bound the second derivative of f(x) = x cos(x2). So, first we
must differentiate. The product and chain rules give

f ′(x) = cos(x2)− 2x2 sin(x2),

and then

f ′′(x) = −2x sin(x2)− (4x sin(x2) + 4x3 cos(x2))

= −6x sin(x2)− 4x3 cos(x2).

Now our job is to find K (preferably as small as possible) such
that |f ′′(x)| < K. First, we use the rules |a+ b| ≤ |a|+ |b| and
|ab| = |a||b| to get

|f ′′(x)| = | − 6x sin(x2)− 4x3 cos(x2)|
≤ | − 6x sin(x2)|+ | − 4x3 cos(x2)|
= | − 6||x|| sin(x2)|+ | − 4||x3|| cos(x2)|
= 6|x|| sin(x2)|+ 4|x3|| cos(x2)|.

In our integral, we have 0 ≤ x ≤ 3/2. For this range of x-values,
the largest value that |x| attains is 3/2. The largest value that
|x3| attains is (3/2)3 = 27/8. A common mistake is to then
assume that the largest values are always attained when x is at
its largest, but this is not the case for | sin(x2)| and | cos(x2)|.
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Both of these functions range between 0 and 1, so their largest
value is 1 (which is not at x = 3/2 ...). Putting all these largest
values in, we find

|f ′′(x)| ≤ 6 · 3
2
· 1 + 4 · 27

8
· 1 = 45/2.

Thus, we take K = 45/2, and using our error bound formulae,
we get

|EM | ≤ K(b− a)3

24n2
=

45
2 · (3/2)3

24 · 52
=

81

640
,

|ET | ≤
K(b− a)3

12n2
=

45
2 · (3/2)3

12 · 152
= 9/320.

(d) First note that, for a given n, our bound on the error for
the midpoint rule is half our bound on the error for the trape-
zoidal rule. Thus, if we want the error to be less than 0.01 for
both simultaneously, we can just make the error bound for the
trapezoidal rule less than 0.01, and then the error bound for
the midpoint rule will be less than 0.005 (and so certainly less
than 0.01). So, we require that

|ET | ≤
K(b− a)3

12n2
< 0.01.

Now we just need to plug in our values for K, a and b, and
rearrange the inequality for n. So,

1215/16

12n2
< 0.01,

which rearranges to

n >

√
1215/16

0.12
= 25.1558...

Therefore, the smallest integer n that we can choose so that our
errors are less than 0.01 is n = 26.
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Problem 4. For each of the following integrals, explain why
they are improper integrals. Then, evaluate them. If they are
divergent, then write ‘DIVERGENT’.
(a) ∫ 1

0

1√
x
dx.

(b) ∫ 4

2

2x

x2 − 9
dx.

(c) ∫ ∞

0

(1− x)e−x dx

Hint : Proceed with integration by parts, and make use of the
limit

lim
t→∞

te−t = 0.

(d) ∫ π/2

0

tan θ dθ.

Hint : Write tan θ as a fraction involving sin θ and cos θ, and
use a substitution.

Solution: (a) This integral is improper, since 1/
√
x → ∞ as

x → 0. In other words, the integrand has an infinite disconti-
nuity at x = 0, which is within the range of integration. To get
around this, we re-write the integral as a limit in the following
way: ∫ 1

0

1√
x
dx = lim

t→0

(∫ 1

t

1√
x
dx

)
= lim

t→0

([
2x1/2

]1
t

)
= lim

t→0

(
2− 2

√
t
)
= 2.

(b) This integral is improper because the integrand has an in-
finite discontinuity at x = 3, which is within the range of in-
tegration. To see that this infinite discontinuity is there, note
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that the denominator factorizes as x2 − 9 = (x − 3)(x + 3), so
is zero at x = −3 and x = 3.

This time, since the infinite discontinuity is in the middle of
the range of integration, we must split the integral up here and
then use limits:∫ 4

2

2x

x2 − 9
dx =

∫ 3

2

2x

x2 − 9
dx+

∫ 4

3

2x

x2 − 9
dx

= lim
s→3

(∫ s

2

2x

x2 − 9
dx

)
+ lim

t→3

(∫ 4

t

2x

x2 − 9
dx

)
.

Let’s just work with the second limit / integral for now; if that
limit doesn’t exist, then we can immediately deduce the integral
is divergent and be finished. If the limit does exist, then we will
have to go on and check the first limit / integral as well. We
have the integral inside the limit evaluating to∫ 4

t

2x

x2 − 9
dx =

[
ln |x2 − 9|

]4
t

= ln |16− 9| − ln |t2 − 9|.

In the limit, t → 3, and when this happens, ln |t2 − 9| → −∞,
so the limit doesn’t exist! Therefore, the integral is divergent.

(c) The integral is improper, since it has an infinite range of
integration (i.e. infinity appears as one of the limits of the
integral). Now to evaluate the integral!
Let’s first solve the corresponding indefinite integral using in-
tegration by parts. Set u = 1− x and v′ = e−x. Then u′ = −1

8



and v = −e−x, so∫
(1− x)e−x dx = (1− x)(−e−x)−

∫
(−1)(−e−x) dx

= (x− 1)(e−x)−
∫

e−x dx

= xe−x − e−x − (−e−x) + c

= xe−x − e−x + e−x + c

= xe−x + c.

Now for the definite integral. We have∫ ∞

0

(1− x)e−x dx = lim
t→∞

(∫ t

0

(1− x)e−x dx

)
= lim

t→∞

([
xe−x

]t
0

)
= lim

t→∞

(
te−t

)
= 0.

(d) The integral is improper since tan θ has an infinite discon-
tinuity at θ = π/2, which is within the range of integration.
We have tan θ = sin θ

cos θ . Note that the numerator here is -1
times the derivative of the denominator, so the integral will be
− ln | cos θ| + c. (If you prefer, use the substitution u = cos θ.)
Thus, we have∫ π/2

0

tan θ dθ = lim
t→π/2

(∫ t

0

tan θ dθ

)
= lim

t→π/2

(
[− ln | cos θ|]t0

)
= lim

t→π/2
(− ln | cos t|+ ln | cos 0|)

= lim
t→π/2

(− ln | cos t|+ ln |1|)

= lim
t→π/2

(− ln | cos t|) .

As t → π/2, cos t → 0, so that ln | cos t| → −∞. Therefore, the
limit does not exist, and the integral is divergent.
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